Homework 6

Remember: No credit will be given for answers without mathematical or logical justification.

Chapter 1

1) Let $f(x)$ be the function on the interval $[0,1]$ defined by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Assume $s(x)$ is some step function defined on $[0,1]$. By the definition of a step function, we know $s(x)$ must be subordinate to some partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$, and that $s(x)$ has the form

$$
s(x)=s_{k} \text { on the } k^{t h} \text { interval }
$$

where the s_{k} are constants. Finally, suppose that $s(x) \geq f(x)$.
a) Make a rough sketch of $f(x)$. Explain, on an intuitive level, why it stands to reason that $\bar{\int}_{0}^{1} f(x) d x \geq \frac{1}{2}$.
b) Relative to the partition P, what, specifically, is I_{k}, and what is $\triangle I_{k}$? (Here I_{k} is the $k^{t h}$ interval and $\triangle I_{k}$ is the length of the interval I_{k}.)
c) Prove that $s_{k} \geq x_{k}$.
d) Prove that $\int_{0}^{1} s(x) d x \geq \sum_{k=1}^{N} x_{k}\left(x_{k}-x_{k-1}\right)$.
$e)$ Prove that $\int_{0}^{1} s(x) d x \geq \sum_{k=1}^{N} \frac{1}{2}\left(x_{k}+x_{k-1}\right)\left(x_{k}-x_{k-1}\right)$.
f) Prove that $\int_{0}^{1} s(x) d x \geq \frac{1}{2}$.
g) Prove that $\bar{\int}_{0}^{1} f(x) d x \geq \frac{1}{2}$.

Chapter 12

2) Prove (a) and (b) of Theorem 12.2.
3) Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$, and assume that the angle between \vec{v} and \vec{w} is acute. Prove that the angle between \vec{v} and $-\vec{w}$ is obtuse.
4) Let $\vec{v}=(1,2,3,4,5) \in \mathbb{R}^{5}$. Determine the projection of \vec{v} onto the following vectors:
a) $\vec{w}=(0,0,0,0,1)$
b) $\vec{w}=(0,0,0,0,167)$
c) $\vec{w}=(1,1,1,1,1)$
d) $\vec{w}=(1,2,3,4,5)$
e) $\vec{w}=(1,-1,0,0,0)$
5) Prove that $\operatorname{proj}_{\vec{a}} \vec{b}$ is linear in the second variable: specifically, if c_{1}, c_{2} are any constants and $\vec{a}, \vec{b}_{1}, \vec{b}_{2}$ are any vectors in \mathbb{R}^{n}, prove that

$$
\operatorname{proj}_{\vec{a}}\left(c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}\right)=c_{1} \operatorname{proj}_{\vec{a}}\left(\vec{b}_{1}\right)+c_{2} \operatorname{proj}_{\vec{a}}\left(\vec{b}_{2}\right)
$$

6) By contrast, prove that $\operatorname{proj}_{\vec{a}} \vec{b}$ is invariant under constant multiplication in the first variable: specifically, if c is any constant, prove that

$$
\operatorname{proj}_{c \vec{a}} \vec{b}=\operatorname{proj}_{\vec{a}} \vec{b}
$$

7) Below are listed several sets of vectors in \mathbb{R}^{4}. In each case, state why the set is not a basis of \mathbb{R}^{4} :
a) $S=\{(1,0,0,0),(0,1,0,0),(0,0,1,0)\}$
b) $S=\{(1,2,1,-1),(1,1,1,1),(-2,-1,1,-1),(0,2,3,-1)\}$
c) $S=\{(2,1,2),(0,0,1),(0,1,-1)\}$
8) We defined a sesquilinear inner product on \mathbb{C}^{n} by

$$
A \cdot B=\sum_{i=1}^{n} a_{i} \bar{b}_{i}
$$

(the Hermitian inner product). However it is certainly possible to define a bilinear inner product on \mathbb{C}^{n} as well, simply by setting

$$
A \cdot{ }_{b} B=\sum_{i=1}^{n} a_{i} b_{i}
$$

as in the real case. In the context of \mathbb{C}^{2}, show that $A \cdot{ }_{b} A$ need not be a positive real number (meaning, for instance, that it would make little sense to define "length" by $\|A\|=\sqrt{A \cdot b A})$.
9) Let \mathbb{R}^{∞} be the vector space whose elements are ordered lists of real numbers. To be precise, \mathbf{v} is in \mathbb{R}^{∞} if

$$
\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{i}, \ldots\right)
$$

and $v_{i} \in \mathbb{R}$ for all $i \in \mathbb{N}$. As with vectors in \mathbb{R}^{n}, we can add an subtract elements of \mathbb{R}^{∞}, and multiply by constants. Specifically, if

$$
\begin{aligned}
& \mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{i}, \ldots\right) \\
& \mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{i}, \ldots\right)
\end{aligned}
$$

are elements of \mathbb{R}^{∞} then we define addition and constant multiplication by

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{i}+w_{i}, \ldots\right) \\
& c \mathbf{v}=\left(c v_{1}, c v_{2}, \ldots, c v_{i}, \ldots\right)
\end{aligned}
$$

where $c \in \mathbb{R}$. We define the zero element, or origin, to be the ordered list consisting entirely of zeros:

$$
\mathcal{O}=(0,0, \ldots, 0, \ldots)
$$

With these definitions, prove that \mathbb{R}^{∞} is a vector space.
10) $\S 12.15 \# 9$
11) $\S 12.15 \# 13$

