Homework 6 Due October 25, 2012

Math 116

Remember: No credit will be given for answers without mathematical or logical justification.

Chapter 1

1) Let f(x) be the function on the interval [0, 1] defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Assume s(x) is some step function defined on [0, 1]. By the definition of a step function, we know s(x) must be subordinate to some partition $P = \{x_0, x_1, \ldots, x_N\}$, and that s(x) has the form

 $s(x) = s_k$ on the k^{th} interval

where the s_k are constants. Finally, suppose that $s(x) \ge f(x)$.

- a) Make a rough sketch of f(x). Explain, on an intuitive level, why it stands to reason that $\overline{\int}_{0}^{1} f(x) dx \ge \frac{1}{2}$.
- b) Relative to the partition P, what, specifically, is I_k , and what is ΔI_k ? (Here I_k) is the k^{th} interval and ΔI_k is the length of the interval I_k .)
- c) Prove that $s_k \ge x_k$.
- d) Prove that $\int_0^1 s(x) dx \ge \sum_{k=1}^N x_k (x_k x_{k-1}).$ e) Prove that $\int_0^1 s(x) dx \ge \sum_{k=1}^N \frac{1}{2} (x_k + x_{k-1}) (x_k x_{k-1}).$
- f) Prove that $\int_0^1 s(x) dx \ge \frac{1}{2}$.
- g) Prove that $\overline{\int}_{0}^{1} f(x) dx \geq \frac{1}{2}$.

Chapter 12

- 2) Prove (a) and (b) of Theorem 12.2.
- 3) Let $\vec{v}, \vec{w} \in \mathbb{R}^n$, and assume that the angle between \vec{v} and \vec{w} is acute. Prove that the angle between \vec{v} and $-\vec{w}$ is obtuse.
- 4) Let $\vec{v} = (1, 2, 3, 4, 5) \in \mathbb{R}^5$. Determine the projection of \vec{v} onto the following vectors:

a)
$$\vec{w} = (0, 0, 0, 0, 1)$$

b) $\vec{w} = (0, 0, 0, 0, 167)$
c) $\vec{w} = (1, 1, 1, 1, 1)$
d) $\vec{w} = (1, 2, 3, 4, 5)$

- e) $\vec{w} = (1, -1, 0, 0, 0)$
- 5) Prove that $\operatorname{proj}_{\vec{a}} \vec{b}$ is linear in the second variable: specifically, if c_1, c_2 are any constants and $\vec{a}, \vec{b}_1, \vec{b}_2$ are any vectors in \mathbb{R}^n , prove that

$$\operatorname{proj}_{\vec{a}}(c_1\vec{b}_1 + c_2\vec{b}_2) = c_1 \operatorname{proj}_{\vec{a}}(\vec{b}_1) + c_2 \operatorname{proj}_{\vec{a}}(\vec{b}_2)$$

6) By contrast, prove that $\operatorname{proj}_{\vec{a}} \vec{b}$ is invariant under constant multiplication in the first variable: specifically, if c is any constant, prove that

$$\operatorname{proj}_{c\vec{a}}\vec{b} = \operatorname{proj}_{\vec{a}}\vec{b}.$$

- Below are listed several sets of vectors in R⁴. In each case, state why the set is not a basis of R⁴:
 - a) $S = \{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}$
 - b) $S = \{(1, 2, 1, -1), (1, 1, 1, 1), (-2, -1, 1, -1), (0, 2, 3, -1)\}$
 - c) $S = \{(2,1,2), (0,0,1), (0,1,-1)\}$
- 8) We defined a sesquilinear inner product on \mathbb{C}^n by

$$A \cdot B = \sum_{i=1}^{n} a_i \bar{b}_i$$

(the Hermitian inner product). However it is certainly possible to define a bilinear inner product on \mathbb{C}^n as well, simply by setting

$$A \cdot_b B = \sum_{i=1}^n a_i b_i$$

as in the real case. In the context of \mathbb{C}^2 , show that $A \cdot_b A$ need not be a positive real number (meaning, for instance, that it would make little sense to define "length" by $||A|| = \sqrt{A \cdot_b A}$.

Let ℝ[∞] be the vector space whose elements are *ordered lists* of real numbers. To be precise, v is in ℝ[∞] if

$$\mathbf{v} = (v_1, v_2, \ldots, v_i, \ldots)$$

and $v_i \in \mathbb{R}$ for all $i \in \mathbb{N}$. As with vectors in \mathbb{R}^n , we can add an subtract elements of \mathbb{R}^{∞} , and multiply by constants. Specifically, if

$$\mathbf{v} = (v_1, v_2, \dots, v_i, \dots)$$

$$\mathbf{w} = (w_1, w_2, \dots, w_i, \dots)$$

are elements of \mathbb{R}^{∞} then we define addition and constant multiplication by

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_i + w_i, \dots)$$

$$c\mathbf{v} = (cv_1, cv_2, \dots, cv_i, \dots)$$

where $c \in \mathbb{R}$. We define the *zero element*, or *origin*, to be the ordered list consisting entirely of zeros:

$$\mathcal{O} = (0, 0, \dots, 0, \dots).$$

With these definitions, prove that \mathbb{R}^∞ is a vector space.

- 10) §12.15 #9
- 11) §12.15 #13