
Extra Credit II Math 116

Due Dec 4, 2012
Remember: No credit will be given without mathematical or logical justification.
This extra credit is worth one homework assignment.

Part 1: Young, Hölder, Minkowski

In the previous extra credit, we used Cauchy’s inequality to prove Cauchy-Schwartz,
which is used to prove the triangle inequality (which we did in class). Schematically,

Cauchy =⇒ Cauchy − Schwarz =⇒ Triangle

Finally we proved Young’s inequality, and showed how Cauchy’s was just a special case
of Young’s. Here we shall ask and answer two questions: is Cauchy-Schwartz a special case
of something more general? (Yes: Hölder’s inequality.) Is the triangle inequality a special
case of something more general? (Yes: Minkowski’s inequality.) Schematically,

Y oung′s =⇒ Hölder =⇒ Minkowski

Throughout, we may let our vector space, denoted Vn, be either Rn or Cn; the theory is
identical in either case. Given a vector ~x ∈ Vn, we have

~x = (x1, . . . , xn) (1)

where the components xi may be either real or complex numbers. For any p ≥ 1, we have
the following norm:

‖~x‖p ,

(
n∑
i=1

|xi|p
) 1

p

(2)

which is called the lp-norm. Also define the l∞ norm by

‖~x‖∞ , max
i∈{1,...,n}

|xi|. (3)

1) Let ~x = (1, 2, 3, 4) and compute the following:

a) ‖~x‖1
b) ‖~x‖2
c) ‖~x‖3
d) ‖~x‖10
e) ‖~x‖∞

2) Prove that the l2-norm on Vn is the same as the usual dot product norm.

3) In the previous homework, you proved Young’s inequality: given a, b, p, q > 0 so that
1
p + 1

q = 1 then

ab ≤ 1

p
ap +

1

q
bq. (4)
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Using this, prove the following:

|ab| ≤ 1

p
|a|p +

1

q
|b|q. (5)

where a, b are any complex (or real) numbers.

4) Using Problem (3), prove Young’s inequality for sums:

n∑
i=1

|aibi| ≤
1

p

p∑
i=1

|ai|p +
1

q

n∑
i=1

|bi|p (6)

where the ai, bi are either real or complex numbers. From this, prove Young’s inequality
for vectors: ∣∣∣ ~A · ~B∣∣∣ ≤ 1

p
‖ ~A‖pp +

1

q
‖ ~B‖qq (7)

Whenever ~A, ~B ∈ Vn (the “·” is either the bilinear or sesquilinear dot product, as
appropriate).

5) Using Young’s inequality for sums, prove Hölder’s inequality for sums:

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|q
) 1

q

(8)

(where the ai, bi are complex or real) and then Hölder’s inequality for vectors:∣∣∣ ~A · ~B∣∣∣ ≤ ‖ ~A‖p‖ ~B‖q (9)

where, as always, we take 1
p + 1

q = 1. (Hint: Use the method you used to prove

Cauchy-Schwarz from Cauchy.)

6) Show that the Cauchy-Schwarz inequality is a special case of Hölder’s inequality.

7) Prove Minkowski’s Inequality: If p ≥ 1 then

‖ ~A + ~B‖p ≤ ‖ ~A‖p + ‖ ~B‖p. (10)

(“Hint”: First assume p > 1, so setting q = p
p−1 you have 1

p + 1
q = 1. Then justify

each of the following steps:

‖ ~A + ~B‖pp =

n∑
i=1

|ai + bi|p

≤
n∑
i=1

|ai||ai + bi|p−1 +

n∑
i=1

|bi||ai + bi|p−1

≤ ‖ ~A‖p‖ ~A + ~B‖p−1p + ‖ ~B‖p‖ ~A + ~B‖p−1p

‖ ~A + ~B‖p ≤ ‖ ~A‖p + ‖ ~B‖p.

(11)

For the case p = 1, take the limit as p↘ 1.)

8) Formally prove that ‖ · ‖p is a norm, when p ≥ 1.
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Part 2: More on the lp norms

9) Why is the sup-norm, ‖ · ‖∞, written as though it is an lp norm with p = ∞? To
answer this, prove that for any ~x ∈ Vn we have

‖~x‖∞ = lim
p→∞

‖~x‖p. (12)

10) If 0 < p < 1, prove that the triangle inequality does not hold for ‖ · ‖p.

11) SEE ADDENDUM

12) SEE ADDENDUM

13) Even if p < 0, we get some information, though ‖~x‖p is nowhere close to being a norm.
With ~x = (x1, . . . , xn), assume that each xi is non-zero, and prove that

lim
p→−∞

‖~x‖p = min
i∈{1,...,n}

{|x1|, . . . , |xn|}. (13)

and explain why it makes sense to define the l−∞-functional, ‖ · ‖−∞, by

‖~x‖−∞ = min
i∈{1,...,n}

{|x1|, . . . , |xn|} (14)

even if some of the xi are zero. What is ‖(10, 12, 13, 14, 15)‖−∞? ‖(0, 1, 2, 3, 4)‖−∞?
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Part 3: The vector spaces V∞ with the lp-norms

Let V∞ be either R∞ or C∞. Recall that a vector ~x ∈ V∞ is an ordered list of numbers

~x = (x1, x2, . . . , xi, . . . ) (15)

where the components xi are in either R or C. Recall that V∞ is a vector space. On V∞ we
can place any of the functionals ‖ · ‖p by setting

‖~x‖p ,

( ∞∑
i=1

|xi|p
) 1

p

. (16)

However, none of the ‖ · ‖p are actually norms on V∞! The reason is that the sum usually
diverges.

Definition. The lp-space is the subset of V∞ consisting of those ~x ∈ V∞ for which the
sum

∑∞
i=1 |xi|p converges.

14) Consider the following vectors in V∞:

~x = (1, 2, 3, . . . , i, . . . )

~y = (1, 1, 1, . . . )

~z =

(
1,

1√
2
,

1√
3
, . . . ,

1√
i
, . . .

)
~w =

(
1,

1

2
,

1

3
, . . . ,

1

i
, . . .

)
~v =

(
1,

1

4
,

1

9
, . . . ,

1

i2
,

)
(17)

For each vector above, determine if it is an element of l1, l2, l4, and/or l∞.

15) We have not yet proven that lp is a vector space: in particular, if ~x, ~y ∈ lp, is ~x + ~y
also in lp? If ~x, ~y ∈ lp and c1, c2 are constants, formally prove that c1~x + c2~y ∈ lp.
Using this, prove that each lp is a vector space. Each norm determines a different
infinite-dimensional vector space!

16) Prove formally that ‖ · ‖p is a norm on lp.

17) If ~A, ~B ∈ V∞, we define their (sesquilinear) dot product

~A · ~B =

∞∑
i=1

aibi (18)

provided the sum converges absolutely.

a) If ~A ∈ lp and ~B ∈ lq where 1
p + 1

q = 1, formally prove that

∞∑
i=1

aibi (19)

converges absolutely.

4



b) If ~A ∈ lp and ~B ∈ lq where 1
p + 1

q = 1, formally prove that∣∣∣ ~A · ~B∣∣∣ ≤ 1

p
‖ ~A‖pp +

1

q
‖ ~B‖qq (20)

c) If ~A ∈ lp and ~B ∈ lq where 1
p + 1

q = 1, formally prove that∣∣∣ ~A · ~B∣∣∣ ≤ ‖ ~A‖p‖ ~B‖q (21)

18) A path ~f(t), t0 ≤ t ≤ t1 is called lp-rectifiable assuming ~f(t) ∈ lp, ~f ′(t) ∈ lp, and∫ t1
t0
‖~f ′(t)‖pdt <∞.

a) Consider the path ~f(t) = (t, 1
4 t

2, . . . , 1
i2 t

i, . . . ) for 0 ≤ t ≤ 1. Show that this
path is l2- and l∞-rectifiable, but not l1-rectifiable.

b) Consider the same path as above, but now for 0 ≤ t ≤ 3. Show that this path is
not rectifiable in the l1, l2, or l∞ sense (instantaneously as t crosses t = 1, the

path’s speed zooms to +∞ despite the fact that the l2 speed at t = 1 is only π2

6 !).
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