Extra Credit II

Remember: No credit will be given without mathematical or logical justification. This extra credit is worth one homework assignment.

Part 1: Young, Hölder, Minkowski

In the previous extra credit, we used Cauchy's inequality to prove Cauchy-Schwartz, which is used to prove the triangle inequality (which we did in class). Schematically,

$$
\text { Cauchy } \quad \Longrightarrow \text { Cauchy - Schwarz } \quad \Longrightarrow \text { Triangle }
$$

Finally we proved Young's inequality, and showed how Cauchy's was just a special case of Young's. Here we shall ask and answer two questions: is Cauchy-Schwartz a special case of something more general? (Yes: Hölder's inequality.) Is the triangle inequality a special case of something more general? (Yes: Minkowski's inequality.) Schematically,

$$
\text { Young's } \quad \Longrightarrow \quad \text { Hölder } \quad \Longrightarrow \quad \text { Minkowski }
$$

Throughout, we may let our vector space, denoted \mathbb{V}^{n}, be either \mathbb{R}^{n} or \mathbb{C}^{n}; the theory is identical in either case. Given a vector $\vec{x} \in \mathbb{V}^{n}$, we have

$$
\begin{equation*}
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

where the components x_{i} may be either real or complex numbers. For any $p \geq 1$, we have the following norm:

$$
\begin{equation*}
\|\vec{x}\|_{p} \triangleq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

which is called the l^{p}-norm. Also define the l^{∞} norm by

$$
\begin{equation*}
\|\vec{x}\|_{\infty} \triangleq \max _{i \in\{1, \ldots, n\}}\left|x_{i}\right| . \tag{3}
\end{equation*}
$$

1) Let $\vec{x}=(1,2,3,4)$ and compute the following:
a) $\|\vec{x}\|_{1}$
b) $\|\vec{x}\|_{2}$
c) $\|\vec{x}\|_{3}$
d) $\|\vec{x}\|_{10}$
e) $\|\vec{x}\|_{\infty}$
2) Prove that the l^{2}-norm on \mathbb{V}^{n} is the same as the usual dot product norm.
3) In the previous homework, you proved Young's inequality: given $a, b, p, q>0$ so that $\frac{1}{p}+\frac{1}{q}=1$ then

$$
\begin{equation*}
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} . \tag{4}
\end{equation*}
$$

Using this, prove the following:

$$
\begin{equation*}
|a b| \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} \tag{5}
\end{equation*}
$$

where a, b are any complex (or real) numbers.
4) Using Problem (3), prove Young's inequality for sums:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq \frac{1}{p} \sum_{i=1}^{p}\left|a_{i}\right|^{p}+\frac{1}{q} \sum_{i=1}^{n}\left|b_{i}\right|^{p} \tag{6}
\end{equation*}
$$

where the a_{i}, b_{i} are either real or complex numbers. From this, prove Young's inequality for vectors:

$$
\begin{equation*}
|\vec{A} \cdot \vec{B}| \leq \frac{1}{p}\|\vec{A}\|_{p}^{p}+\frac{1}{q}\|\vec{B}\|_{q}^{q} \tag{7}
\end{equation*}
$$

Whenever $\vec{A}, \vec{B} \in \mathbb{V}^{n}$ (the "." is either the bilinear or sesquilinear dot product, as appropriate).
5) Using Young's inequality for sums, prove Hölder's inequality for sums:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{\frac{1}{q}} \tag{8}
\end{equation*}
$$

(where the a_{i}, b_{i} are complex or real) and then Hölder's inequality for vectors:

$$
\begin{equation*}
|\vec{A} \cdot \vec{B}| \leq\|\vec{A}\|_{p}\|\vec{B}\|_{q} \tag{9}
\end{equation*}
$$

where, as always, we take $\frac{1}{p}+\frac{1}{q}=1$. (Hint: Use the method you used to prove Cauchy-Schwarz from Cauchy.)
6) Show that the Cauchy-Schwarz inequality is a special case of Hölder's inequality.
7) Prove Minkowski's Inequality: If $p \geq 1$ then

$$
\begin{equation*}
\|\vec{A}+\vec{B}\|_{p} \leq\|\vec{A}\|_{p}+\|\vec{B}\|_{p} \tag{10}
\end{equation*}
$$

("Hint": First assume $p>1$, so setting $q=\frac{p}{p-1}$ you have $\frac{1}{p}+\frac{1}{q}=1$. Then justify each of the following steps:

$$
\begin{align*}
\|\vec{A}+\vec{B}\|_{p}^{p} & =\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p} \\
& \leq \sum_{i=1}^{n}\left|a _ { i } \left\|a_{i}+\left.b_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|b_{i} \| a_{i}+b_{i}\right|^{p-1}\right.\right. \tag{11}\\
& \leq\|\vec{A}\|_{p}\|\vec{A}+\vec{B}\|_{p}^{p-1}+\|\vec{B}\|_{p}\|\vec{A}+\vec{B}\|_{p}^{p-1} \\
\|\vec{A}+\vec{B}\|_{p} & \leq\|\vec{A}\|_{p}+\|\vec{B}\|_{p}
\end{align*}
$$

For the case $p=1$, take the limit as $p \searrow 1$.)
8) Formally prove that $\|\cdot\|_{p}$ is a norm, when $p \geq 1$.

Part 2: More on the l^{p} norms

9) Why is the sup-norm, $\|\cdot\|_{\infty}$, written as though it is an l^{p} norm with $p=\infty$? To answer this, prove that for any $\vec{x} \in \mathbb{V}^{n}$ we have

$$
\begin{equation*}
\|\vec{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\vec{x}\|_{p} \tag{12}
\end{equation*}
$$

10) If $0<p<1$, prove that the triangle inequality does not hold for $\|\cdot\|_{p}$.
11) SEE ADDENDUM
12) SEE ADDENDUM
13) Even if $p<0$, we get some information, though $\|\vec{x}\|_{p}$ is nowhere close to being a norm. With $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, assume that each x_{i} is non-zero, and prove that

$$
\begin{equation*}
\lim _{p \rightarrow-\infty}\|\vec{x}\|_{p}=\min _{i \in\{1, \ldots, n\}}\left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \tag{13}
\end{equation*}
$$

and explain why it makes sense to define the $l^{-\infty}$-functional, $\|\cdot\|_{-\infty}$, by

$$
\begin{equation*}
\|\vec{x}\|_{-\infty}=\min _{i \in\{1, \ldots, n\}}\left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \tag{14}
\end{equation*}
$$

even if some of the x_{i} are zero. What is $\|(10,12,13,14,15)\|_{-\infty} ?\|(0,1,2,3,4)\|_{-\infty}$?

Part 3: The vector spaces \mathbb{V}^{∞} with the l^{p}-norms

Let \mathbb{V}^{∞} be either \mathbb{R}^{∞} or \mathbb{C}^{∞}. Recall that a vector $\vec{x} \in \mathbb{V}^{\infty}$ is an ordered list of numbers

$$
\begin{equation*}
\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots\right) \tag{15}
\end{equation*}
$$

where the components x_{i} are in either \mathbb{R} or \mathbb{C}. Recall that \mathbb{V}^{∞} is a vector space. On \mathbb{V}^{∞} we can place any of the functionals $\|\cdot\|_{p}$ by setting

$$
\begin{equation*}
\|\vec{x}\|_{p} \triangleq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \tag{16}
\end{equation*}
$$

However, none of the $\|\cdot\|_{p}$ are actually norms on \mathbb{V}^{∞} ! The reason is that the sum usually diverges.

Definition. The l^{p}-space is the subset of \mathbb{V}^{∞} consisting of those $\vec{x} \in \mathbb{V}^{\infty}$ for which the sum $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}$ converges.
14) Consider the following vectors in \mathbb{V}^{∞} :

$$
\begin{align*}
\vec{x} & =(1,2,3, \ldots, i, \ldots) \\
\vec{y} & =(1,1,1, \ldots) \\
\vec{z} & =\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots, \frac{1}{\sqrt{i}}, \ldots\right) \tag{17}\\
\vec{w} & =\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{i}, \ldots\right) \\
\vec{v} & =\left(1, \frac{1}{4}, \frac{1}{9}, \ldots, \frac{1}{i^{2}},\right)
\end{align*}
$$

For each vector above, determine if it is an element of l^{1}, l^{2}, l^{4}, and/or l^{∞}.
15) We have not yet proven that l^{p} is a vector space: in particular, if $\vec{x}, \vec{y} \in l^{p}$, is $\vec{x}+\vec{y}$ also in l^{p} ? If $\vec{x}, \vec{y} \in l^{p}$ and c_{1}, c_{2} are constants, formally prove that $c_{1} \vec{x}+c_{2} \vec{y} \in l^{p}$. Using this, prove that each l^{p} is a vector space. Each norm determines a different infinite-dimensional vector space!
16) Prove formally that $\|\cdot\|_{p}$ is a norm on l^{p}.
17) If $\vec{A}, \vec{B} \in \mathbb{V}^{\infty}$, we define their (sesquilinear) dot product

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=\sum_{i=1}^{\infty} a_{i} \overline{b_{i}} \tag{18}
\end{equation*}
$$

provided the sum converges absolutely.
a) If $\vec{A} \in l^{p}$ and $\vec{B} \in l^{q}$ where $\frac{1}{p}+\frac{1}{q}=1$, formally prove that

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i} \overline{b_{i}} \tag{19}
\end{equation*}
$$

converges absolutely.
b) If $\vec{A} \in l^{p}$ and $\vec{B} \in l^{q}$ where $\frac{1}{p}+\frac{1}{q}=1$, formally prove that

$$
\begin{equation*}
|\vec{A} \cdot \vec{B}| \leq \frac{1}{p}\|\vec{A}\|_{p}^{p}+\frac{1}{q}\|\vec{B}\|_{q}^{q} \tag{20}
\end{equation*}
$$

c) If $\vec{A} \in l^{p}$ and $\vec{B} \in l^{q}$ where $\frac{1}{p}+\frac{1}{q}=1$, formally prove that

$$
\begin{equation*}
|\vec{A} \cdot \vec{B}| \leq\|\vec{A}\|_{p}\|\vec{B}\|_{q} \tag{21}
\end{equation*}
$$

18) A path $\vec{f}(t), t_{0} \leq t \leq t_{1}$ is called l^{p}-rectifiable assuming $\vec{f}(t) \in l^{p}, \overrightarrow{f^{\prime}}(t) \in l^{p}$, and $\int_{t_{0}}^{t_{1}}\left\|\overrightarrow{f^{\prime}}(t)\right\|_{p} d t<\infty$.
a) Consider the path $\vec{f}(t)=\left(t, \frac{1}{4} t^{2}, \ldots, \frac{1}{i^{2}} t^{i}, \ldots\right)$ for $0 \leq t \leq 1$. Show that this path is l^{2} - and l^{∞}-rectifiable, but not l^{1}-rectifiable.
b) Consider the same path as above, but now for $0 \leq t \leq 3$. Show that this path is not rectifiable in the l^{1}, l^{2}, or l^{∞} sense (instantaneously as t crosses $t=1$, the path's speed zooms to $+\infty$ despite the fact that the l^{2} speed at $t=1$ is only $\frac{\pi^{2}}{6}!$).
