Extra Credit II Due Dec 4, 2012

Remember: No credit will be given without mathematical or logical justification.

This extra credit is worth one homework assignment.

Part 1: Young, Hölder, Minkowski

In the previous extra credit, we used Cauchy's inequality to prove Cauchy-Schwartz, which is used to prove the triangle inequality (which we did in class). Schematically,

 $Cauchy \implies Cauchy - Schwarz \implies Triangle$

Finally we proved Young's inequality, and showed how Cauchy's was just a special case of Young's. Here we shall ask and answer two questions: is Cauchy-Schwartz a special case of something more general? (Yes: Hölder's inequality.) Is the triangle inequality a special case of something more general? (Yes: Minkowski's inequality.) Schematically,

$$Young's \implies H\"older \implies Minkowski$$

Throughout, we may let our vector space, denoted \mathbb{V}^n , be either \mathbb{R}^n or \mathbb{C}^n ; the theory is identical in either case. Given a vector $\vec{x} \in \mathbb{V}^n$, we have

$$\vec{x} = (x_1, \dots, x_n) \tag{1}$$

Math 116

where the components x_i may be either real or complex numbers. For any $p \ge 1$, we have the following norm:

$$\|\vec{x}\|_{p} \triangleq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

$$\tag{2}$$

which is called the l^p -norm. Also define the l^{∞} norm by

$$\|\vec{x}\|_{\infty} \triangleq \max_{i \in \{1,\dots,n\}} |x_i|.$$
(3)

1) Let $\vec{x} = (1, 2, 3, 4)$ and compute the following:

- a) $\|\vec{x}\|_1$
- b) $\|\vec{x}\|_2$
- c) $\|\vec{x}\|_{3}$
- d) $\|\vec{x}\|_{10}$
- e) $\|\vec{x}\|_{\infty}$
- 2) Prove that the l^2 -norm on \mathbb{V}^n is the same as the usual dot product norm.
- 3) In the previous homework, you proved Young's inequality: given a, b, p, q > 0 so that $\frac{1}{p} + \frac{1}{q} = 1$ then

$$ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q. \tag{4}$$

Using this, prove the following:

$$|ab| \leq \frac{1}{p}|a|^p + \frac{1}{q}|b|^q.$$
 (5)

where a, b are any complex (or real) numbers.

4) Using Problem (3), prove Young's inequality for sums:

$$\sum_{i=1}^{n} |a_i b_i| \leq \frac{1}{p} \sum_{i=1}^{p} |a_i|^p + \frac{1}{q} \sum_{i=1}^{n} |b_i|^p \tag{6}$$

where the a_i , b_i are either real or complex numbers. From this, prove Young's inequality for vectors:

$$\left|\vec{A} \cdot \vec{B}\right| \leq \frac{1}{p} \|\vec{A}\|_p^p + \frac{1}{q} \|\vec{B}\|_q^q \tag{7}$$

Whenever $\vec{A}, \vec{B} \in \mathbb{V}^n$ (the "·" is either the bilinear or sesquilinear dot product, as appropriate).

5) Using Young's inequality for sums, prove Hölder's inequality for sums:

$$\sum_{i=1}^{n} |a_i b_i| \leq \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}$$
(8)

(where the a_i, b_i are complex or real) and then Hölder's inequality for vectors:

$$\left|\vec{A} \cdot \vec{B}\right| \leq \|\vec{A}\|_p \|\vec{B}\|_q \tag{9}$$

where, as always, we take $\frac{1}{p} + \frac{1}{q} = 1$. (Hint: Use the method you used to prove Cauchy-Schwarz from Cauchy.)

- 6) Show that the Cauchy-Schwarz inequality is a special case of Hölder's inequality.
- 7) Prove Minkowski's Inequality: If $p \ge 1$ then

$$\|\vec{A} + \vec{B}\|_{p} \leq \|\vec{A}\|_{p} + \|\vec{B}\|_{p}.$$
(10)

("Hint": First assume p > 1, so setting $q = \frac{p}{p-1}$ you have $\frac{1}{p} + \frac{1}{q} = 1$. Then justify each of the following steps:

$$\|\vec{A} + \vec{B}\|_{p}^{p} = \sum_{i=1}^{n} |a_{i} + b_{i}|^{p}$$

$$\leq \sum_{i=1}^{n} |a_{i}||a_{i} + b_{i}|^{p-1} + \sum_{i=1}^{n} |b_{i}||a_{i} + b_{i}|^{p-1}$$

$$\leq \|\vec{A}\|_{p} \|\vec{A} + \vec{B}\|_{p}^{p-1} + \|\vec{B}\|_{p} \|\vec{A} + \vec{B}\|_{p}^{p-1}$$

$$\|\vec{A} + \vec{B}\|_{p} \leq \|\vec{A}\|_{p} + \|\vec{B}\|_{p}.$$
(11)

For the case p = 1, take the limit as $p \searrow 1$.)

8) Formally prove that $\|\cdot\|_p$ is a norm, when $p \ge 1$.

Part 2: More on the l^p norms

9) Why is the sup-norm, $\|\cdot\|_{\infty}$, written as though it is an l^p norm with $p = \infty$? To answer this, prove that for any $\vec{x} \in \mathbb{V}^n$ we have

$$\|\vec{x}\|_{\infty} = \lim_{p \to \infty} \|\vec{x}\|_p.$$
(12)

10) If $0 , prove that the triangle inequality does not hold for <math>\|\cdot\|_p$.

11) SEE ADDENDUM

- 12) SEE ADDENDUM
- 13) Even if p < 0, we get some information, though $\|\vec{x}\|_p$ is nowhere close to being a norm. With $\vec{x} = (x_1, \ldots, x_n)$, assume that each x_i is non-zero, and prove that

$$\lim_{p \to -\infty} \|\vec{x}\|_p = \min_{i \in \{1, \dots, n\}} \{ |x_1|, \dots, |x_n| \}.$$
 (13)

and explain why it makes sense to define the $l^{-\infty}$ -functional, $\|\cdot\|_{-\infty}$, by

$$\|\vec{x}\|_{-\infty} = \min_{i \in \{1,\dots,n\}} \{|x_1|,\dots,|x_n|\}$$
(14)

even if some of the x_i are zero. What is $||(10, 12, 13, 14, 15)||_{-\infty}? ||(0, 1, 2, 3, 4)||_{-\infty}?$

Part 3: The vector spaces \mathbb{V}^{∞} with the l^p -norms

Let \mathbb{V}^{∞} be either \mathbb{R}^{∞} or \mathbb{C}^{∞} . Recall that a vector $\vec{x} \in \mathbb{V}^{\infty}$ is an ordered list of numbers

$$\vec{x} = (x_1, x_2, \dots, x_i, \dots)$$
 (15)

where the components x_i are in either \mathbb{R} or \mathbb{C} . Recall that \mathbb{V}^{∞} is a vector space. On \mathbb{V}^{∞} we can place any of the functionals $\|\cdot\|_p$ by setting

$$\|\vec{x}\|_p \triangleq \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}.$$
(16)

However, none of the $\|\cdot\|_p$ are actually norms on \mathbb{V}^{∞} ! The reason is that the sum usually diverges.

<u>Definition</u>. The l^p -space is the subset of \mathbb{V}^{∞} consisting of those $\vec{x} \in \mathbb{V}^{\infty}$ for which the sum $\sum_{i=1}^{\infty} |x_i|^p$ converges.

14) Consider the following vectors in \mathbb{V}^{∞} :

$$\vec{x} = (1, 2, 3, \dots, i, \dots)
\vec{y} = (1, 1, 1, \dots)
\vec{z} = \left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \dots, \frac{1}{\sqrt{i}}, \dots\right)
\vec{w} = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{i}, \dots\right)
\vec{v} = \left(1, \frac{1}{4}, \frac{1}{9}, \dots, \frac{1}{i^{2}}, \right)$$
(17)

For each vector above, determine if it is an element of l^1 , l^2 , l^4 , and/or l^{∞} .

- 15) We have not yet proven that l^p is a vector space: in particular, if $\vec{x}, \vec{y} \in l^p$, is $\vec{x} + \vec{y}$ also in l^p ? If $\vec{x}, \vec{y} \in l^p$ and c_1, c_2 are constants, formally prove that $c_1\vec{x} + c_2\vec{y} \in l^p$. Using this, prove that each l^p is a vector space. Each norm determines a *different* infinite-dimensional vector space!
- 16) Prove formally that $\|\cdot\|_p$ is a norm on l^p .
- 17) If $\vec{A}, \vec{B} \in \mathbb{V}^{\infty}$, we define their (sesquilinear) dot product

$$\vec{A} \cdot \vec{B} = \sum_{i=1}^{\infty} a_i \overline{b_i} \tag{18}$$

provided the sum converges absolutely.

a) If $\vec{A} \in l^p$ and $\vec{B} \in l^q$ where $\frac{1}{p} + \frac{1}{q} = 1$, formally prove that

$$\sum_{i=1}^{\infty} a_i \overline{b_i} \tag{19}$$

converges absolutely.

b) If $\vec{A} \in l^p$ and $\vec{B} \in l^q$ where $\frac{1}{p} + \frac{1}{q} = 1$, formally prove that

$$\left| \vec{A} \cdot \vec{B} \right| \leq \frac{1}{p} \| \vec{A} \|_{p}^{p} + \frac{1}{q} \| \vec{B} \|_{q}^{q}$$
(20)

c) If $\vec{A} \in l^p$ and $\vec{B} \in l^q$ where $\frac{1}{p} + \frac{1}{q} = 1$, formally prove that

$$\left|\vec{A} \cdot \vec{B}\right| \leq \|\vec{A}\|_p \|\vec{B}\|_q \tag{21}$$

- 18) A path $\vec{f}(t)$, $t_0 \leq t \leq t_1$ is called l^p -rectifiable assuming $\vec{f}(t) \in l^p$, $\vec{f'}(t) \in l^p$, and $\int_{t_0}^{t_1} \|\vec{f'}(t)\|_p dt < \infty$.
 - a) Consider the path $\vec{f}(t) = (t, \frac{1}{4}t^2, \dots, \frac{1}{t^2}t^i, \dots)$ for $0 \le t \le 1$. Show that this path is l^2 and l^{∞} -rectifiable, but not l^1 -rectifiable.
 - b) Consider the same path as above, but now for $0 \le t \le 3$. Show that this path is not rectifiable in the l^1 , l^2 , or l^{∞} sense (instantaneously as t crosses t = 1, the path's speed zooms to $+\infty$ despite the fact that the l^2 speed at t = 1 is only $\frac{\pi^2}{6}!$).