Extra Credit I

Remember: No credit will be given without mathematical or logical justification. This extra credit is worth one homework assignment.

Part 1: Cauchy and Cauchy-Schwarz

In the following problems, we will prove the Cauchy-Schwarz inequality from the Cauchy inequality.

1) The original Cauchy inequality is as follows: If $a, b \in \mathbb{R}$, then

$$
\begin{equation*}
a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2} \tag{1}
\end{equation*}
$$

a) Prove the Cauchy inequality. (Hint: Start with the fact that $(a-b)^{2} \geq 0$).
b) Prove that equality holds in (1) if and only if $a=b$.
2) Prove the weighted Cauchy inequality. That is, prove that if $\epsilon>0$ then

$$
\begin{equation*}
a b \leq \frac{1}{2} \epsilon a^{2}+\frac{1}{2} \epsilon^{-1} b^{2} \tag{2}
\end{equation*}
$$

3) Let $\vec{A}=\left(a_{1}, \ldots, a_{n}\right)$ and $\vec{B}=\left(b_{1}, \ldots, b_{n}\right)$ be vectors in \mathbb{R}^{n}. As usual the dot product is given by $\vec{A} \cdot \vec{B}=\sum_{i=1}^{n} a_{i} b_{i}$. Using $\mathbb{1}$, prove the Cauchy inequality for vectors:

$$
\begin{equation*}
\vec{A} \cdot \vec{B} \leq \frac{1}{2}\|\vec{A}\|^{2}+\frac{1}{2}\|\vec{B}\|^{2} \tag{3}
\end{equation*}
$$

What is the condition for equality?
4) Prove the weighted Cauchy inequality for vectors: if $\epsilon>0$ then

$$
\begin{equation*}
\vec{A} \cdot \vec{B} \leq \frac{1}{2} \epsilon\|\vec{A}\|^{2}+\frac{1}{2} \epsilon^{-1}\|\vec{B}\|^{2} \tag{4}
\end{equation*}
$$

5) In this problem we will use the Cauchy inequality to prove the Cauchy-Schwarz inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ be arbitrary non-zero vectors.
a) Set $\vec{A}=\|\vec{v}\|^{-1} \vec{v}$ and $\vec{B}=\|\vec{w}\|^{-1} \vec{w}$. Prove that \vec{A} and \vec{B} are unit vectors.
b) Using only (3), prove that $\vec{A} \cdot \vec{B} \leq 1$.
c) Using part (b), prove the Cauchy-Schwarz inequality: $\vec{v} \cdot \vec{w} \leq\|\vec{v}\|\|\vec{w}\|$ for any $\vec{v}, \vec{w} \in \mathbb{R}^{n}$. What is the condition for equality?

Part 2: Convexity and Young's Inequality

In the following problems, we will use the convexity of the exponential function to prove Young's inequality.

Definition. A real-valued function f defined on $[A, B]$ (or (A, B) or $(A, B])$ or $[A, B)$) is called convex if, whenever $A \leq a<b \leq B$, the line segment between the points $(a, f(a))$ and $(b, f(b))$ lies above or on the graph of f on $[a, b]$.
6) If $A \leq a<b \leq B$ show that the equation of the segment of the secant line between $(a, f(a))$ and $(b, f(b))$ is

$$
\begin{align*}
x(t) & =(1-t) a+t b \\
y(t) & =(1-t) f(a)+t f(b) \tag{5}
\end{align*}
$$

where t varies between 0 and 1 . Show that a function $f(x)$ defined on an interval $[A, B]$ is convex if and only if

$$
\begin{equation*}
f((1-t) a+t b) \leq(1-t) f(a)+t f(b) \tag{6}
\end{equation*}
$$

whenever $A \leq a<b \leq B$, and $t \in[0,1]$.
7) Below are listed several functions along their domains of definition. Which are convex? (No formal proofs-you can justify with a graph or some intuitive reasoning.)
a) $f(x)=x$ on $[-1,1]$
b) $f(x)=\operatorname{sgn}(x)$ on $[-1,1]$
c) $f(x)=|x|$ on $[-1,1]$
d) $f(x)=\sin (x)$ on $[0, \pi]$
e) $f(x)=\sin (x)$ on $[\pi, 2 \pi]$
f) $f(x)=x^{2}$ on $(-\infty, \infty)$
g) $f(x)=x^{3}-x$ on $(-\infty, \infty)$
h) $f(x)=x^{3}-x$ on $[-1, \infty)$
i) $f(x)=x^{3}-x$ on $[0, \infty)$
8) Assume $f(x)$ has a second derivative everywhere on the interval (A, B). Prove that if $f^{\prime \prime}(x) \geq 0$ on (A, B) then f is convex on (A, B) (you do not have to prove the converse, which, incidentally, is also true: if $f^{\prime \prime}(x)$ exists and f is convex, then $\left.f^{\prime \prime}(x) \geq 0\right)$.
9) Prove that the function $f(x)=e^{x}$ is convex.
10) Prove that, whenever $t \in[0,1]$, we have

$$
\begin{equation*}
e^{(1-t) a+t b} \leq(1-t) e^{a}+t e^{b} \tag{7}
\end{equation*}
$$

11) Here we finally prove Young's inequality, a generalization of Cauchy's inequality. Assume p, q are any positive real numbers that satisfy

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1 \tag{8}
\end{equation*}
$$

If a and b are also positive (but otherwise have no special relationship) then $\ln (a)$ and $\ln (b)$ are well-defined real numbers. Prove the following:
a) $e^{\ln a+\ln b}=a b$
b) Using the convexity of the function $f(x)=e^{x}$, prove that

$$
\begin{equation*}
e^{\frac{1}{p} \cdot p \cdot \ln a+\frac{1}{q} \cdot q \cdot \ln b} \leq \frac{1}{p} e^{p \ln a}+\frac{1}{q} e^{q \ln b} \tag{9}
\end{equation*}
$$

c) Prove Young's inequality, namely that whenever $a, b, p, q>0$ and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{equation*}
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} . \tag{10}
\end{equation*}
$$

d) Prove that Cauchy's inequality is a special case of Young's inequality.

