Field Axioms. A field is a set \mathbb{F} along with two operations, "addition" and "multiplication," that obey the following six axioms:

F-I) (Commutativity) If $x, y \in \mathbb{F}$ then $x y=y x$ and $x+y=y+x$.
F-II) (Associativity) If $x, y, z \in \mathbb{F}$ then $x(y z)=(x y) z$ and $x+(y+z)=(x+y)+z$.
F-III) (Distributivity) If $x, y, z \in \mathbb{F}$ then $x(y+z)=x y+x z$.
F-IV) (Identity) There exist two distinct elements $0,1 \in \mathbb{F}$ (the additive identity and the multiplicative identity, respectively) so that for any $x \in \mathbb{F}$, we have $0+x=x$ and $1 x=x$.

F-V) (Additive Inverses) Given any $x \in \mathbb{F}$, there is some $y \in \mathbb{F}$ (commonly denoted $-x$) so that $x+y=0$.

F-VI) (Multiplicative Inverses) Given any $x \in \mathbb{F}$ except $x=0$, there is some $y \in \mathbb{F}$ (commonly denoted x^{-1}) so that $x y=1$.

Order Axioms. A field F is called an ordered field if there is some subset $\mathbb{F}^{+} \subset \mathbb{F}$ (called the "positive" elements of \mathbb{F}) so that the following three axioms hold:

O-I) If $x, y \in \mathbb{F}^{+}$then $x+y \in \mathbb{F}^{+}$and $x y \in \mathbb{F}^{+}$.
O-II) If $x \in \mathbb{F}$ and $x \neq 0$, then either $x \in \mathbb{F}^{+}$or $-x \in \mathbb{F}^{+}$, but not both.
O-III) $0 \notin \mathbb{F}^{+}$.

Completeness. An ordered field \mathbb{F} is called complete if
C-I) Every subset of \mathbb{F} that has an upper bound has a least upper bound.

Theorem. There is a unique complete ordered field, which is the real numbers.

Properties of Integration

a) (Additivity of the Interval.) If $a<b<c$ and $f(x)$ is integrable on $[a, c]$ then

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

b) (Translation Invariance.) If $f(x)$ is integrable on $[a, b]$ and $c \in \mathbb{R}$ then

$$
\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x
$$

c) (Scale Invariance.) If $f(x)$ is integrable on $[a, b]$ and $k \in \mathbb{R}, k \neq 0$, then

$$
\int_{a}^{b} f(x) d x=\frac{1}{k} \int_{k a}^{k b} f\left(\frac{x}{k}\right) d x
$$

d) (Linearity.) If $f(x), g(x)$ are integrable on $[a, b]$ and c_{1}, c_{2} are constants, then

$$
\int_{a}^{b}\left(c_{1} f(x)+c_{2} g(x)\right) d x=c_{1} \int_{a}^{b} f(x) d x+c_{2} \int_{a}^{b} g(x) d x
$$

$e)$ (Comparison.) If $g(x) \leq f(x)$ and both are integrable on $[a, b]$, then

$$
\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x
$$

$f)$ (Triangle Inequality.) If $f(x)$ is integrable on $[a, b]$, then

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

If $\vec{f}(t)$ is an integrable vector-valued function, then $\|\vec{f}(t)\|$ is integrable and

$$
\left\|\int_{a}^{b} \vec{f}(x) d x\right\| \leq \int_{a}^{b}\|\vec{f}(x)\| d x
$$

g) (Integrability of Step Functions.) If $g(x)$ is the step function subordinate to the partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $[a, b]$ which takes on the value g_{k} on the interior of the $k^{t h}$ interval, then $g(x)$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} g(x) d x=\sum_{k=1}^{N} g_{k} \cdot\left(x_{k}-x_{k-1}\right)
$$

(Note that constant functions are step functions.)

Properties of the Bilinear Dot Product.

a) (Positivity) If $\vec{A} \in \mathbb{R}^{n}$ then $\vec{A} \cdot \vec{A} \geq 0$, with equality if an only if $\vec{A}=\mathcal{O}$
b) (Symmetry) If $\vec{A}, \vec{B} \in \mathbb{R}^{n}$ then $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
c) (Bilinearity) If $\vec{A}, \vec{B}, \overrightarrow{A_{1}}, \vec{A}_{2}, \vec{B}_{1}, \vec{B}_{2} \in \mathbb{R}^{n}$ and $c_{1}, c_{2} \in \mathbb{R}$ then

$$
\begin{aligned}
& \left(c_{1} \vec{A}_{1}+c_{2} \vec{A}_{2}\right) \cdot \vec{B}=c_{1}\left(\vec{A}_{1} \cdot \vec{B}\right)+c_{2}\left(\overrightarrow{A_{2}} \cdot \vec{B}\right) \\
& \vec{A} \cdot\left(c_{1} \vec{B}_{1}+c_{2} \vec{B}_{2}\right)=c_{1}\left(\vec{A} \cdot \vec{B}_{1}\right)+c_{2}\left(\vec{A} \cdot \vec{B}_{2}\right)
\end{aligned}
$$

Properties of the Sesquilinear Dot Product.

a) (Positivity) If $\vec{A} \in \mathbb{C}^{n}$ then $\vec{A} \cdot \vec{A} \geq 0$, with equality if an only if $\vec{A}=\mathcal{O}$
b) (Skew Symmetry) If $\vec{A}, \vec{B} \in \mathbb{C}^{n}$ then $\vec{A} \cdot \vec{B}=\overrightarrow{\vec{B} \cdot \vec{A}}$
c) (Sesquilinearity) If $\vec{A}, \vec{B}, \vec{A}_{1}, \vec{A}_{2}, \vec{B}_{1}, \vec{B}_{2} \in \mathbb{C}^{n}$ and $c_{1}, c_{2} \in \mathbb{C}$ then

$$
\begin{aligned}
& \left(c_{1} \vec{A}_{1}+c_{2} \vec{A}_{2}\right) \cdot \vec{B}=c_{1}\left(\vec{A}_{1} \cdot \vec{B}\right)+c_{2}\left(\overrightarrow{A_{2}} \cdot \vec{B}\right) \\
& \vec{A} \cdot\left(c_{1} \vec{B}_{1}+c_{2} \vec{B}_{2}\right)=\overline{c_{1}}\left(\vec{A} \cdot \vec{B}_{1}\right)+\overline{c_{2}}\left(\vec{A} \cdot \vec{B}_{2}\right)
\end{aligned}
$$

Properties of the Cross Product

a) (Bilinearity) If $\vec{A}, \vec{B}, \vec{A}_{1}, \vec{A}_{2}, \vec{B}_{1}, \vec{B}_{2} \in \mathbb{R}^{3}$ and $c_{1}, c_{2} \in \mathbb{R}$ then

$$
\begin{aligned}
& \left(c_{1} \vec{A}_{1}+c_{2} \vec{A}_{2}\right) \times \vec{B}=c_{1}\left(\overrightarrow{A_{1}} \times \vec{B}\right)+c_{2}\left(\vec{A}_{2} \times \vec{B}\right) \\
& \vec{A} \times\left(c_{1} \vec{B}_{1}+c_{2} \vec{B}_{2}\right)=c_{1}\left(\vec{A} \times \vec{B}_{1}\right)+c_{2}\left(\vec{A} \times \vec{B}_{2}\right)
\end{aligned}
$$

b) (Antisymmetry) If $\vec{A}, \vec{B} \in \mathbb{R}^{3}$ then $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$
c) (Orthogonality) If $\vec{A}, \vec{B} \in \mathbb{R}^{3}$ then

$$
\vec{A} \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\vec{A} \times \vec{B})=0
$$

d) (Lagrange Identity) If $\vec{A}, \vec{B} \in \mathbb{R}^{3}$ then $\|\vec{A} \times \vec{B}\|^{2}=\|\vec{A}\|^{2}\|\vec{B}\|^{2}-(\vec{A} \cdot \vec{B})^{2}$
e) (Jacobi Identity) If $\vec{A}, \vec{B}, \vec{C} \in \mathbb{R}^{3}$ then

$$
\vec{A} \times(\vec{B} \times \vec{C})+\vec{B} \times(\vec{C} \times \vec{A})+\vec{C} \times(\vec{A} \times \vec{B})=0
$$

Axiomatic Definition of a Norm.

A function $\|\cdot\|$ on \mathbb{C}^{n} (or \mathbb{R}^{n}) that takes vectors to real numbers is called a norm provided the following three properties hold:

N-I) (Positivity) For any $\vec{v} \in \mathbb{C}^{n}$ (or \mathbb{R}^{n}), we have $\|\vec{v}\| \in \mathbb{R}$, and in fact $\|\vec{v}\| \geq 0$ with equality if and only if $\vec{v}=\mathcal{O}$.

N-II) (Homogeneity) If \vec{v} is a vector and c is a scalar, then $\|c \vec{v}\|=|c|\|\vec{v}\|$.
N-III) (The Triangle Inequality) If \vec{v}_{1}, \vec{v}_{2} are vectors, then $\left\|\vec{v}_{1}+\vec{v}_{2}\right\| \leq\left\|\vec{v}_{1}\right\|+\left\|\vec{v}_{2}\right\|$.

Curvilinear Motion. Given a path $\vec{r}(t)$ in \mathbb{R}^{n}, we have

$$
\begin{array}{ll}
\text { Velocity }: \vec{v}=\frac{d \vec{r}}{d t} & \text { Speed }: v=\|\vec{v}\| \quad \text { Acceleration }: \vec{a}(t)=\frac{d^{2} \vec{r}}{d t^{2}} \\
\text { UnitTangent }: \vec{T} & \text { Principle Normal }: \vec{N}
\end{array}
$$

Acceleration in terms of its normal and tangential components:

$$
\vec{a}(t)=\dot{v} \vec{T}+\kappa v^{2} \vec{N}
$$

Osculating plane at time t :

$$
M(\vec{r}(t) ; \vec{T}(t), \vec{N}(t))=\left\{\vec{r}(t)+c_{1} \vec{T}+c_{2} \vec{N} \mid c_{1}, c_{2} \in \mathbb{R}\right\}
$$

Formula for curvature in an arbitrary parametrization:

$$
\kappa(t)=\frac{\|v \vec{a}-\dot{v} \vec{v}\|}{v^{3}}
$$

Special Formulas for Curvilinear Motion in \mathbb{R}^{3}
We have the binormal:

$$
\begin{equation*}
\vec{B}=\vec{T} \times \vec{N} \tag{1}
\end{equation*}
$$

and the derivative equations

$$
\begin{array}{llll}
\frac{d \vec{T}}{d s} & = & \kappa \vec{N} & \\
\frac{d N}{d s} & = & -\kappa \vec{T} & \\
\frac{d B}{d s} & = & & -\tau \vec{N}
\end{array}
$$

We have the κ, τ equations in the arclength parametrization:

$$
\begin{aligned}
\kappa & =\left\|\vec{T} \times \frac{d \vec{T}}{d s}\right\| \\
\tau & =\kappa^{-2} \vec{T} \cdot\left(\frac{d \vec{T}}{d s} \times \frac{d^{2} \vec{T}}{d s^{2}}\right)
\end{aligned}
$$

and the κ, τ equations in an arbitrary parametrization:

$$
\begin{aligned}
\kappa & =\frac{\|\vec{v} \times \vec{a}\|}{v^{3}} \\
\tau & =\frac{\dot{\vec{r}} \cdot(\ddot{\vec{r}} \times \ddot{\vec{r}})}{\|\dot{\vec{r}} \times \ddot{\vec{r}}\|^{2}}
\end{aligned}
$$

Scratch

Scratch

Scratch

