Field Axioms. A *field* is a set \mathbb{F} along with two operations, "addition" and "multiplication," that obey the following six axioms:

- F-I) (Commutativity) If $x, y \in \mathbb{F}$ then xy = yx and x + y = y + x.
- F-II) (Associativity) If $x, y, z \in \mathbb{F}$ then x(yz) = (xy)z and x + (y + z) = (x + y) + z.
- F-III) (Distributivity) If $x, y, z \in \mathbb{F}$ then x(y+z) = xy + xz.
- F-IV) (Identity) There exist two distinct elements $0, 1 \in \mathbb{F}$ (the additive identity and the multiplicative identity, respectively) so that for any $x \in \mathbb{F}$, we have 0 + x = x and 1x = x.
- F-V) (Additive Inverses) Given any $x \in \mathbb{F}$, there is some $y \in \mathbb{F}$ (commonly denoted -x) so that x + y = 0.
- F-VI) (Multiplicative Inverses) Given any $x \in \mathbb{F}$ except x = 0, there is some $y \in \mathbb{F}$ (commonly denoted x^{-1}) so that xy = 1.

Order Axioms. A field F is called an *ordered field* if there is some subset $\mathbb{F}^+ \subset \mathbb{F}$ (called the "positive" elements of \mathbb{F}) so that the following three axioms hold:

- O-I) If $x, y \in \mathbb{F}^+$ then $x + y \in \mathbb{F}^+$ and $xy \in \mathbb{F}^+$.
- O-II) If $x \in \mathbb{F}$ and $x \neq 0$, then either $x \in \mathbb{F}^+$ or $-x \in \mathbb{F}^+$, but not both.

O-III) $0 \notin \mathbb{F}^+$.

Completeness. An ordered field \mathbb{F} is called *complete* if

C-I) Every subset of \mathbb{F} that has an upper bound has a least upper bound.

Theorem. There is a unique complete ordered field, which is the real numbers.

Properties of Integration

a) (Additivity of the Interval.) If a < b < c and f(x) is integrable on [a, c] then

$$\int_a^b f(x) \, dx \, + \, \int_b^c f(x) \, dx \, = \, \int_a^c f(x) \, dx.$$

b) (Translation Invariance.) If f(x) is integrable on [a, b] and $c \in \mathbb{R}$ then

$$\int_a^b f(x) \, dx = \int_{a+c}^{b+c} f(x-c) \, dx.$$

c) (Scale Invariance.) If f(x) is integrable on [a, b] and $k \in \mathbb{R}, k \neq 0$, then

$$\int_{a}^{b} f(x) \, dx = \frac{1}{k} \int_{ka}^{kb} f\left(\frac{x}{k}\right) \, dx.$$

d) (Linearity.) If f(x), g(x) are integrable on [a, b] and c_1, c_2 are constants, then

$$\int_{a}^{b} (c_1 f(x) + c_2 g(x)) \, dx = c_1 \int_{a}^{b} f(x) \, dx + c_2 \int_{a}^{b} g(x) \, dx$$

e) (Comparison.) If $g(x) \leq f(x)$ and both are integrable on [a, b], then

$$\int_a^b g(x) \, dx \; \le \; \int_a^b f(x) \, dx.$$

f) (Triangle Inequality.) If f(x) is integrable on [a, b], then

$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx$$

If $\vec{f}(t)$ is an integrable vector-valued function, then $\|\vec{f}(t)\|$ is integrable and

$$\left\|\int_{a}^{b} \vec{f}(x) \, dx\right\| \leq \int_{a}^{b} \left\|\vec{f}(x)\right\| \, dx$$

g) (Integrability of Step Functions.) If g(x) is the step function subordinate to the partition $P = \{x_0, x_1, \ldots, x_N\}$ of [a, b] which takes on the value g_k on the interior of the k^{th} interval, then g(x) is integrable on [a, b] and

$$\int_{a}^{b} g(x) \, dx = \sum_{k=1}^{N} g_k \cdot (x_k - x_{k-1}).$$

(Note that constant functions are step functions.)

Properties of the Bilinear Dot Product.

- a) (Positivity) If $\vec{A} \in \mathbb{R}^n$ then $\vec{A} \cdot \vec{A} \ge 0$, with equality if an only if $\vec{A} = \mathcal{O}$
- b) (Symmetry) If $\vec{A}, \vec{B} \in \mathbb{R}^n$ then $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- c) (Bilinearity) If $\vec{A}, \vec{B}, \vec{A}_1, \vec{A}_2, \vec{B}_1, \vec{B}_2 \in \mathbb{R}^n$ and $c_1, c_2 \in \mathbb{R}$ then

$$\begin{pmatrix} c_1 \vec{A}_1 + c_2 \vec{A}_2 \end{pmatrix} \cdot \vec{B} = c_1 \left(\vec{A}_1 \cdot \vec{B} \right) + c_2 \left(\vec{A}_2 \cdot \vec{B} \right)$$
$$\vec{A} \cdot \left(c_1 \vec{B}_1 + c_2 \vec{B}_2 \right) = c_1 \left(\vec{A} \cdot \vec{B}_1 \right) + c_2 \left(\vec{A} \cdot \vec{B}_2 \right)$$

Properties of the Sesquilinear Dot Product.

- a) (Positivity) If $\vec{A} \in \mathbb{C}^n$ then $\vec{A} \cdot \vec{A} \ge 0$, with equality if an only if $\vec{A} = \mathcal{O}$
- b) (Skew Symmetry) If $\vec{A}, \vec{B} \in \mathbb{C}^n$ then $\vec{A} \cdot \vec{B} = \overline{\vec{B} \cdot \vec{A}}$
- c) (Sesquilinearity) If $\vec{A}, \vec{B}, \vec{A}_1, \vec{A}_2, \vec{B}_1, \vec{B}_2 \in \mathbb{C}^n$ and $c_1, c_2 \in \mathbb{C}$ then

$$\begin{pmatrix} c_1 \vec{A}_1 + c_2 \vec{A}_2 \end{pmatrix} \cdot \vec{B} = c_1 \left(\vec{A}_1 \cdot \vec{B} \right) + c_2 \left(\vec{A}_2 \cdot \vec{B} \right) \\ \vec{A} \cdot \left(c_1 \vec{B}_1 + c_2 \vec{B}_2 \right) = \overline{c_1} \left(\vec{A} \cdot \vec{B}_1 \right) + \overline{c_2} \left(\vec{A} \cdot \vec{B}_2 \right)$$

Properties of the Cross Product

a) (Bilinearity) If $\vec{A}, \vec{B}, \vec{A}_1, \vec{A}_2, \vec{B}_1, \vec{B}_2 \in \mathbb{R}^3$ and $c_1, c_2 \in \mathbb{R}$ then

$$\begin{pmatrix} c_1 \vec{A_1} + c_2 \vec{A_2} \end{pmatrix} \times \vec{B} = c_1 \begin{pmatrix} \vec{A_1} \times \vec{B} \end{pmatrix} + c_2 \begin{pmatrix} \vec{A_2} \times \vec{B} \end{pmatrix}$$
$$\vec{A} \times \begin{pmatrix} c_1 \vec{B_1} + c_2 \vec{B_2} \end{pmatrix} = c_1 \begin{pmatrix} \vec{A} \times \vec{B_1} \end{pmatrix} + c_2 \begin{pmatrix} \vec{A} \times \vec{B_2} \end{pmatrix}$$

- b) (Antisymmetry) If $\vec{A}, \vec{B} \in \mathbb{R}^3$ then $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$
- c) (Orthogonality) If $\vec{A}, \vec{B} \in \mathbb{R}^3$ then

$$\vec{A} \cdot \left(\vec{A} \times \vec{B} \right) = \vec{B} \cdot \left(\vec{A} \times \vec{B} \right) = 0$$

- d) (Lagrange Identity) If $\vec{A}, \vec{B} \in \mathbb{R}^3$ then $\|\vec{A} \times \vec{B}\|^2 = \|\vec{A}\|^2 \|\vec{B}\|^2 (\vec{A} \cdot \vec{B})^2$
- $e) \;$ (Jacobi Identity) If
 $\vec{A},\vec{B},\vec{C}\in\mathbb{R}^3$ then

$$\vec{A} \times \left(\vec{B} \times \vec{C} \right) + \vec{B} \times \left(\vec{C} \times \vec{A} \right) + \vec{C} \times \left(\vec{A} \times \vec{B} \right) = 0$$

Axiomatic Definition of a Norm.

A function $\|\cdot\|$ on \mathbb{C}^n (or \mathbb{R}^n) that takes vectors to real numbers is called a *norm* provided the following three properties hold:

- N-I) (Positivity) For any $\vec{v} \in \mathbb{C}^n$ (or \mathbb{R}^n), we have $\|\vec{v}\| \in \mathbb{R}$, and in fact $\|\vec{v}\| \ge 0$ with equality if and only if $\vec{v} = \mathcal{O}$.
- N-II) (Homogeneity) If \vec{v} is a vector and c is a scalar, then $||c\vec{v}|| = |c|||\vec{v}||$.
- N-III) (The Triangle Inequality) If \vec{v}_1, \vec{v}_2 are vectors, then $\|\vec{v}_1 + \vec{v}_2\| \leq \|\vec{v}_1\| + \|\vec{v}_2\|$.

Curvilinear Motion. Given a path $\vec{r}(t)$ in \mathbb{R}^n , we have

$$\begin{split} Velocity: \vec{v} &= \frac{d\vec{r}}{dt} \qquad Speed: v = \|\vec{v}\| \qquad Acceleration: \vec{a}(t) = \frac{d^2\vec{r}}{dt^2} \\ Unit Tangent: \vec{T} \qquad Principle Normal: \vec{N} \end{split}$$

Acceleration in terms of its normal and tangential components:

$$\vec{a}(t) = \dot{v}\vec{T} + \kappa v^2\vec{N}$$

Osculating plane at time t:

$$M\left(\vec{r}(t)\,;\,\vec{T}(t),\,\vec{N}(t)\right) = \left\{ \,\vec{r}(t) + c_1\vec{T} + c_2\vec{N} \,\mid\, c_1, c_2 \in \mathbb{R} \,\right\}$$

Formula for curvature in an arbitrary parametrization:

$$\kappa(t) \; = \; \frac{\|v\,\vec{a}\; - \; \dot{v}\,\vec{v}\|}{v^3}$$

Special Formulas for Curvilinear Motion in \mathbb{R}^3

We have the *binormal*:

$$\vec{B} = \vec{T} \times \vec{N} \tag{1}$$

and the derivative equations

$$\begin{array}{lll} \frac{d\vec{T}}{ds} &= & \kappa \vec{N} \\ \frac{d\vec{N}}{ds} &= & -\kappa \vec{T} & & +\tau \vec{B} \\ \frac{d\vec{B}}{ds} &= & -\tau \vec{N} \end{array}$$

We have the κ , τ equations in the arclength parametrization:

$$\begin{aligned} \kappa &= \left\| \vec{T} \times \frac{d\vec{T}}{ds} \right\| \\ \tau &= \kappa^{-2} \, \vec{T} \cdot \left(\frac{d\vec{T}}{ds} \times \frac{d^2 \vec{T}}{ds^2} \right) \end{aligned}$$

and the κ , τ equations in an arbitrary parametrization:

$$\begin{split} \kappa &=& \frac{\|\vec{v}\times\vec{a}\|}{v^3} \\ \tau &=& \frac{\dot{\vec{r}}\cdot\left(\ddot{\vec{r}}\times\ddot{\vec{r}}\right)}{\left\|\dot{\vec{r}}\times\ddot{\vec{r}}\right\|^2} \end{split}$$

Scratch

Scratch

Scratch