Basic Knowledge

Ch I

Ch 1
Ch 3
Ch 4
Ch 5
Ch 9

Chapter 12

Section 12.2

- Definition of \mathbb{R}^{n} and its vector space operations.

Section 12.3

- Definition of parallel.

Section 12.5

- Definition of the dot product in \mathbb{R}^{n}.
- Properties of the dot product in \mathbb{R}^{n}.
- The Cauchy-Schwartz inequality.

Section 12.6

- Norm, or length, of a vector.
- Properties of the norm.
- The Triangle inequality.

Section 12.7

- Definition of orthogonality.

Section 12.9

- Definition of the projection of \vec{b} onto $\vec{a}: \operatorname{Proj}_{\vec{a}} \vec{b}$.
- Definition of the angle between two vectors, via $\vec{v} \cdot \vec{w}=\|v\|\|w\| \cos \theta$.

Section 12.10

- Standard unit vectors for \mathbb{R}^{n}.
- Definition of linear combination.

Section 12.12

- Definition of linear span of a set of vectors.
- Definition of "span uniquely."

Section 12.13

- Definition of linear independence.
- Definition of orthogonal set.

Section 12.14

- Definition of the term "basis."
- The fact that every basis of \mathbb{R}^{n} has precisely n vectors.

Section 12.16

- Definition of the vector space \mathbb{C}^{n}.
- Definition of the sesquilinear (or Hermitian) inner product on \mathbb{C}^{n}.
- Definition of parallel and orthogonal vectors in \mathbb{C}^{n}.
- Definition of the norm in \mathbb{C}^{n}.
- Definition of the angle between two vectors in \mathbb{C}^{n}.

Chapter 13

Sections 13.1-13.10 (Recall we worked a little differently from the book)

- The meaning of " k-plane through \vec{P} in \mathbb{R}^{n}."
- The notation $M\left(P ; \vec{v}_{1}, \ldots, \vec{v}_{k}\right)$.
- The terms parallel and skew in reference to k-planes.
- The conditions for two k-planes to coincide.
- The special names for 1 -planes and $(n-1)$-planes in \mathbb{R}^{n} (namely lines and hyperplanes).
- The special form for the equation of a hyperplane: $\vec{N} \cdot(\vec{x}-\vec{P})=0$.
- Vector-valued functions
- Definition of the cross product in \mathbb{R}^{3}.
- The algebra \mathbb{H}, and the commutator product on \mathbb{H}
- The relationships between quaternions and \mathbb{R}^{4}, and the purely imaginary quaternions and \mathbb{R}^{3}
- The relation between quaternions and the cross product
- The triple product and its geometric interpretation
- Determinants of $n \times n$ matrices, and interpretations

Chapter 14

Section 14.1-14.3

- Vector-valued functions
- Limits
- Differentiation and integration of vector-valued functions
- Properties of Integration and Differentiation (eg. product rules for dot and cross products)
- The Chain Rule. Super important!
- First and Second Fundamental Theorems of Calculus for vector-valued functions
- The Integral Triangle inequality: $\left\|\int_{a}^{b} \vec{f}(t) d t \mid \leq \int_{a}^{b}\right\| \vec{f}(t) \| d t$

Section 14.6-14.8 (Basic notions)

- Position, Velocity and Acceleration vectors, and speed
- The Unit Tangent, \vec{T}
- The Principle Normal, \vec{N}
- Decomposition of the acceleration vector into tangential and normal components:

$$
\vec{a}(t)=v^{\prime}(t) T(t)+v(t)\left\|T^{\prime}\right\| N(t)
$$

- The osculating 2-plane

Section 14.10-14.12 (Arclength)

- The n-dimensional Pythagorean theorem: $\triangle s=\sqrt{\left(\triangle x_{1}\right)^{2}+\cdots+\left(\triangle x_{n}\right)^{2}}$
- The infinitesimal Pythagorean theorem:

$$
\begin{aligned}
d s & =\sqrt{\left(d x_{1}\right)^{2}+\cdots+\left(d x_{n}\right)^{2}} \\
& =\sqrt{\left(\frac{d x_{1}}{d t}\right)^{2}+\cdots+\left(\frac{d x_{n}}{d t}\right)^{2}} d t
\end{aligned}
$$

- Arclength: given $\vec{f}(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$, the length of arc between $t=t_{0}$ and $t=t_{1}$ is

$$
\begin{aligned}
s\left(t_{1}\right)-s\left(t_{0}\right) & =\int_{t=t_{0}}^{t_{1}} d s \\
o r & \\
s\left(t_{1}\right)-s\left(t_{0}\right) & =\int_{t=t_{0}}^{t_{1}} \sqrt{\left(d f_{1}\right)^{2}+\cdots+\left(d f_{n}\right)^{2}} \\
o r & \\
s\left(t_{1}\right)-s\left(t_{0}\right) & =\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d f_{1}}{d t}\right)^{2}+\cdots+\left(\frac{d f_{n}}{d t}\right)^{2}} d t \\
o r & \\
s\left(t_{1}\right)-s\left(t_{0}\right) & =\int_{t_{0}}^{t_{1}}\left\|\frac{d \vec{f}}{d t}\right\| d t .
\end{aligned}
$$

Section 14.14 (Curvature)

- Definition of curvature: change in T with respect to arclength (not time!):

$$
\kappa=\left\|\frac{d \vec{T}}{d s}\right\|
$$

- Formula for κ with respect to time:

$$
\kappa=\left\|\frac{d \vec{T}}{d s}\right\|=\left\|\frac{d \vec{T}}{d t}\right\| \frac{1}{v}=\frac{\|\dot{v} \vec{v}-v \vec{a}\|}{v^{3}}
$$

- Formula for acceleration in terms of tangential and normal components:

$$
\begin{equation*}
\vec{a}(t)=\dot{v}(t) \vec{T}(t)+\kappa(t)(v(t))^{2} \vec{N}(t) \tag{1}
\end{equation*}
$$

- Special formula for κ in dimension 3:

$$
\kappa(t)=\frac{\|\vec{a}(t) \times \vec{v}(t)\|}{(v(t))^{3}}
$$

Not in book (Curves in 3-dimensional space)

- The TNB frame:

$$
\begin{aligned}
\vec{T} & =\frac{d \vec{f}}{d s} \\
\vec{N} & =\frac{d \vec{T} / d s}{\|d \vec{T} / d s\|} \\
\vec{B} & =\vec{T} \times \vec{N}
\end{aligned}
$$

$\vec{T}=$ Unit Tangent, $\vec{N}=$ Principle Normal, $\vec{B}=$ Binormal.

- Derivative formulas:

$$
\begin{aligned}
& \frac{d \vec{T}}{d s}=\kappa \vec{N} \\
& \frac{d \vec{N}}{d s}=-\kappa \vec{T}+\tau \vec{B} \\
& \frac{d \vec{B}}{d s}=-\tau \vec{N}
\end{aligned}
$$

- Computational formulas for dimension 3:

$$
\begin{aligned}
\vec{B} & =\frac{\dot{\vec{f}} \times \ddot{\vec{f}}}{\|\dot{\vec{f}} \times \ddot{\vec{f}}\|} \\
\kappa & =\frac{\|\dot{\vec{f}} \times \ddot{\vec{f}}\|^{3}}{\|\dot{\vec{f}}\|^{3}} \\
\tau & =\kappa^{-2} \vec{T} \cdot\left(\frac{d \vec{T}}{d s} \times \frac{d^{2} \vec{T}}{d s^{2}}\right)=\frac{\dot{\vec{f}} \cdot(\ddot{\vec{f}} \times \cdots \overrightarrow{\vec{f}})}{\|\dot{\vec{f}} \times \ddot{\vec{f}}\|^{2}}
\end{aligned}
$$

