Basic Knowledge

Math 116

Ch I

Ch 1

Ch 3

Ch 4

Ch 5

Ch 9

Chapter 12

Section 12.2

• Definition of \mathbb{R}^n and its vector space operations.

Section 12.3

• Definition of parallel.

Section 12.5

- Definition of the dot product in \mathbb{R}^n .
- Properties of the dot product in \mathbb{R}^n .
- The Cauchy-Schwartz inequality.

Section 12.6

- Norm, or length, of a vector.
- Properties of the norm.
- The Triangle inequality.

Section 12.7

• Definition of orthogonality.

Section 12.9

- Definition of the projection of \vec{b} onto \vec{a} : $\operatorname{Proj}_{\vec{a}}\vec{b}$.
- Definition of the angle between two vectors, via $\vec{v} \cdot \vec{w} = \|v\| \|w\| \cos \theta$.

Section 12.10

• Standard unit vectors for \mathbb{R}^n .

• Definition of linear combination.

Section 12.12

- Definition of linear span of a set of vectors.
- Definition of "span uniquely."

Section 12.13

- Definition of linear independence.
- Definition of orthogonal set.

Section 12.14

- Definition of the term "basis."
- The fact that every basis of \mathbb{R}^n has precisely *n* vectors.

Section 12.16

- Definition of the vector space \mathbb{C}^n .
- Definition of the sesquilinear (or Hermitian) inner product on \mathbb{C}^n .
- Definition of parallel and orthogonal vectors in \mathbb{C}^n .
- Definition of the norm in \mathbb{C}^n .
- Definition of the angle between two vectors in \mathbb{C}^n .

Chapter 13

Sections 13.1–13.10 (Recall we worked a little differently from the book)

- The meaning of "k-plane through \vec{P} in \mathbb{R}^n ."
- The notation $M(P; \vec{v}_1, \ldots, \vec{v}_k)$.
- The terms *parallel* and *skew* in reference to *k*-planes.
- The conditions for two k-planes to coincide.
- The special names for 1-planes and (n-1)-planes in \mathbb{R}^n (namely *lines* and *hyperplanes*).
- The special form for the equation of a hyperplane: $\vec{N} \cdot (\vec{x} \vec{P}) = 0$.
- Vector-valued functions
- Definition of the cross product in \mathbb{R}^3 .
- The algebra $\mathbb H,$ and the commutator product on $\mathbb H$
- The relationships between quaternions and $\mathbb{R}^4,$ and the purely imaginary quaternions and \mathbb{R}^3
- The relation between quaternions and the cross product
- The triple product and its geometric interpretation
- Determinants of $n \times n$ matrices, and interpretations

Chapter 14

Section 14.1 - 14.3

- Vector-valued functions
- Limits
- Differentiation and integration of vector-valued functions
- Properties of Integration and Differentiation (eg. product rules for dot and cross products)
- The Chain Rule. Super important!
- First and Second Fundamental Theorems of Calculus for vector-valued functions

• The Integral Triangle inequality: $\left\|\int_{a}^{b} \vec{f}(t) dt\right\| \leq \int_{a}^{b} \left\|\vec{f}(t)\right\| dt$

Section 14.6-14.8 (Basic notions)

- Position, Velocity and Acceleration vectors, and speed
- The Unit Tangent, \vec{T}
- The Principle Normal, \vec{N}
- Decomposition of the acceleration vector into tangential and normal components:

$$\vec{a}(t) = v'(t)T(t) + v(t)||T'||N(t)$$

• The osculating 2-plane

Section 14.10-14.12 (Arclength)

- The n-dimensional Pythagorean theorem: $\Delta s = \sqrt{(\Delta x_1)^2 + \dots + (\Delta x_n)^2}$
- The infinitesimal Pythagorean theorem:

$$ds = \sqrt{(dx_1)^2 + \dots + (dx_n)^2}$$
$$= \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \dots + \left(\frac{dx_n}{dt}\right)^2} dt$$

• Arclength: given $\vec{f}(t) = (f_1(t), \dots, f_n(t))$, the length of arc between $t = t_0$ and $t = t_1$ is

$$s(t_{1}) - s(t_{0}) = \int_{t=t_{0}}^{t_{1}} ds$$

or

$$s(t_{1}) - s(t_{0}) = \int_{t=t_{0}}^{t_{1}} \sqrt{(df_{1})^{2} + \dots + (df_{n})^{2}}$$

or

$$s(t_{1}) - s(t_{0}) = \int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{df_{1}}{dt}\right)^{2} + \dots + \left(\frac{df_{n}}{dt}\right)^{2}} dt$$

or

$$s(t_{1}) - s(t_{0}) = \int_{t_{0}}^{t_{1}} \left\|\frac{d\vec{f}}{dt}\right\| dt.$$

Section 14.14 (Curvature)

• Definition of curvature: change in T with respect to arclength (not time!):

$$\kappa = \left\| \frac{d\vec{T}}{ds} \right\|$$

• Formula for κ with respect to time:

$$\kappa = \left\| \frac{d\vec{T}}{ds} \right\| = \left\| \frac{d\vec{T}}{dt} \right\| \frac{1}{v} = \frac{\|\dot{v}\vec{v} - v\vec{a}\|}{v^3}$$

• Formula for acceleration in terms of tangential and normal components:

$$\vec{a}(t) = \dot{v}(t)\vec{T}(t) + \kappa(t)(v(t))^2\vec{N}(t)$$
(1)

• Special formula for κ in dimension 3:

$$\kappa(t) = \frac{\|\vec{a}(t) \times \vec{v}(t)\|}{(v(t))^3}$$

Not in book (Curves in 3-dimensional space)

• The TNB frame:

$$\begin{split} \vec{T} &= \frac{d\vec{f}}{ds} \\ \vec{N} &= \frac{d\vec{T}/ds}{\|d\vec{T}/ds\|} \\ \vec{B} &= \vec{T} \times \vec{N} \end{split}$$

 \vec{T} =Unit Tangent, \vec{N} =Principle Normal, \vec{B} =Binormal.

• Derivative formulas:

$$\frac{d\vec{T}}{ds} = \kappa \vec{N}$$
$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$$
$$\frac{d\vec{B}}{ds} = -\tau \vec{N}$$

• Computational formulas for dimension 3:

$$\vec{B} = \frac{\vec{f} \times \vec{f}}{\left\|\vec{f} \times \vec{f}\right\|}$$

$$\kappa = \frac{\left\|\vec{f} \times \vec{f}\right\|}{\left\|\vec{f}\right\|^{3}}$$

$$\tau = \kappa^{-2} \vec{T} \cdot \left(\frac{d\vec{T}}{ds} \times \frac{d^{2}\vec{T}}{ds^{2}}\right) = \frac{\vec{f} \cdot \left(\vec{f} \times \vec{f}\right)}{\left\|\vec{f} \times \vec{f}\right\|^{2}}$$