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Introduction

Over the last decade and a half, conformal field theory (CFT') has been one of the main domains
of interaction between theoretical physics and mathematics. The present review is designed as
an introduction to the subject aimed at mathematicians. Its scope is limited to certain simple
aspects of the theory of conformally invariant quantum fields in two space-time dimensions. The
two-dimensional CFT experienced an explosive developement following the seminal 1984 paper
of Belavin, Polyakov and Zamolodchikov, although many of its concepts were introduced before
that date. Tt still plays a very important role in numerous recent developments concerning
higher-dimensional quantum fields. From the mathematical point of view, CFT may be defined
as a study of Virasoro algebra (or algebras containing it), of its representations and of their
intertwiners. The theory defies, however, such narrowing definitions which obstruct the much
wider view that it opens and into which we offer here only some glimpses. In four lectures we
discuss:

- conformal free fields,

axiomatic approach to conformal field theory,

perturbative analysis of two-dimensional sigma models,
- exact solutions of the Wess-Zumino-Witten and coset theories.

To signal the omissions, whose full list would be much longer, let us point out that almost no
mention is made of lattice models whose critical points are described by CF'T’s, of the perturbative
approach to string theory, based on the two-dimensional CFT, of superconformal theories. The
modest goal of these lectures is to make the physical literature on CFT, both the original papers
and the textbooks (e.g. “Conformal Field Theory” by Di Francesco-Mathieu-Sénéchal, Springer
1996) more accessible to mathematicians.
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1. What is quantum field theory?

Field theory deals with maps ¢ between space ¥ (the space-time) and space M (the target). These
spaces come with additional structure, e.g. they may be Riemannian or pseudo-Riemannian
manifolds. The case of Minkowski signature on ¥ is the one of field theory proper whereas the
FEuclidean signature corresponds to static (equilibrium) situations. In many cases, however, (for
example for flat ¥) the passage from one signature to the other may be obtained by analytic
continuation in the time variable (“Wick rotation” ¢ — it) and both situations may be studied
interchangeably, the Euclidean setup being sometimes more convenient.

An important datum of the field theory is the action, a local functional of ¢. For example,
one may consider S(¢) = [, |d¢|*dv (where the metric structures on ¥ and M and a volume on
¥ must be used to give sense to the right hand side).

In the classical field theory one studies the extrema of the action functional i.e. maps ¢
satisfying

5S(da) = 0.

The extremality condition is a PDE for ¢, e.g. the wave or Laplace equation or the Maxwell,
Yang-Mills, or Einstein ones, to mention only the most famous cases. One should bear in mind
that non-linear PDE’s is a complicated subject where our ignorance exceeds our knowledge.

Following an extremely intuitive reformulation of quantum field theory (QFT) by Feynman,
the latter consists in studying functional integrals

/ F(é) e 59 Dg (1)

Map(X,M)

where F(¢) is a functional of ¢ (an “insertion”) and D¢ stands for a local product [ _ du(¢(x))

of measures on M. The above expression is formal and one of the aims of these lectures is to
show that it may be given sense and even calculated in some simple situations. More generally,
however, the functional integral written above should be considered as an approximate expression
for structures which live their own lives, different and in some aspects more interesting then the



lives of the objects whose symbols appear in the integral. Still, although formal and approximate,
the functional integral language proved extremely useful in studying the QFT structures. It also
made the relation of QFT to classical field theory quite intuitive: unlike in the case of the latter,
all maps ¢ (called often but somewhat abusively classical field configurations or classical fields)

give contributions to QFT, each with the probability amplitude p(¢) ~ e w5 (in Minkowski
case, these are not probabilities since S(¢) should be taken imaginary, but never mind). The
classical physics corresponds to the stationary phase or saddle point approximation in which all
contributions to the integral (1) but those of the stationary points of S are discarded. Such an
approximation is justified when the Planck constant & may be treated as very small (as in the
usual macro-scale physics but not for example in superfluid helium).

It should be stressed that, in general, the relation of quantum to classical is not one to one (as
the formulation (1) could suggest) and not even many to many, except for special situations, e.g.
with lots of symmetries on both levels. Such situations are of special interest for mathematicians
because they allow to reduce QFT to the more familiar classical structures. The QFT approach
allowed in many such cases new insights, recall, for example, the use of topological or quasi-
topological field theories as factories of invariants. This motivates the utilitarian interest of
mathematicians in QFT. The very difficulty in making sense out of the integrals (1) is at the
origin of a deeper source of mathematical interest of QFT, namely in the mathematics of the
new structures carried by QFT. The mathematical structures in integrable or conformal two-
dimensional field theories or in four-dimensional SUSY gauge theories just emerging provide here
the examples (not speaking about mathematics which promises to underlie the panoply of string
theory dualities).

It may be good to remind briefly what do physicists use QFT for.

i/. It provides a relativistic theory of interactions of elementary particles. And so Quan-
tum Electrodynamics (QED) describes interactions of electrons, their anti-particles positrons
and photons, the Glashow-Weinberg-Salam theory of electro-weak interactions describes at the
same time the beta decays and QED, Quantum Chromodynamics (QCD) deals with the strong
interactions (quarks forming nucleons). The latter two build what is called the standard model
of particle physics.

ii/. QFT in its Euclidean version describes critical phenomena at the 2°¢ order phase tran-
sition points like that in HyO at temperature 7. = 374°C and pressure p. = 2.2 x 107 pascals
(~ 20atm), or that in Fe at T, = 770°C or in the Ising model at its critical temperature.
The criticality is characterized by slow decay with the distance of statistical correlations whose
asymptotics is described by FEuclidean QFT.

iii/. In string theory aiming at unification of gravity with the other interactions (from point
i/.) two-dimensional conformal QFT provides the classical (and perturbative) solutions and the
the quantum string theory proper (still to be non-perturbatively defined) may be considered as
a deformation of quantum field theory where particles are replaced by strings (the typical size of
the string being the deformation parameter).

iv/. Finally, many QFT techniques are used in the theory of non-relativistic condensed
matter.

2. Euclidean free field and Gaussian functional integrals

In the rest of this lecture we shall describe how one may give sense to functional integral (1) in
the simplest case of free field. This is the case where the space of maps Map(X, M) is a vector
space (inheriting the linear structure from that of M) or is a union of affine spaces and where



the action functional 5 is quadratic. The corresponding functional integral is Gaussian plus, in
the 2 case, an easy but interesting decoration (in theta functions). The adjective “free” refers
to the absence of particle interactions which is related to linearity of the classical equations.

Let (2,7) be a Riemannian, (d 4 1)-dimensional, oriented, compact manifold and let M = R
(we consider the Euclidean case). The action functional is taken as

S(0) = £ [(dof + mPd)do = £(6,G79),, 2)

b))

where dv is the Riemannian volume and the operator %G =(-A+ mz)_l is often called the
(Euclidean) propagator of free field of mass m.

The simplest functional integral of the type (1) is the one with trivial insertion F' =1 giving
what is called “statistical sum” or “partition function” and denoted traditionally by Z:

7 - / ¢S Dy — / e~3(5.679) Dy

Map(Z,R) Map(Z,R)

(we have put i = 1 for simplicity). The names come from statistical physics: the integral sums
the probabilities (probability amplitudes) p(¢) of all microscopic states ¢ of the system. The
space Map(X,R) may be considered as the Hilbert space with the L? scalar product using the
metric volume dv on 3. Were this space finite dimensional, the integral would give

7 = (det )2

if we normalized D¢ = ], % where (¢;) are any orthonormal coordinates on the Hilbert space of
maps. It is sensible to maintain the above formula as a definition of the formal functional integral
for the partition function even in the infinite-dimensional case. It is necessary then to give sense to
the determinant of the positive operator ¢ whose (discrete) eigenvalues A,, n = 1,2,..., behave
as O(n~?{4+1) A convenient (but nonunique) way to do it is by the zeta-function regularization

defining

det G = e~ ¢c0

where (¢(s), given as ., A® for Res < —d"'Tl, extends to a meromorphic function analytic in

the vicinity of zero. We shall stick to this definition of infinite determinants throughout the
present lectures.

The next functional integrals we may like to compute are the ones for the correlations functions

depending on a sequence (x;)/2; of points in ¥

[ lar) - lan) e Do

Map(Z,R)
[ 50 Do
Map(Z,R)

(P(x1) - dlwn)) =




Again mimicking the case of finite-dimensional Gaussian integrals, we may define the formal
functional integral on the right hand side by setting

0 for n odd,
Gl(xy,xq) for n =2,
_ ) G, 22) Gas, wy) + Glay, ws) G2, 74)
(6(e) = 0en)) = 3 LG, ) G, 23) for n = 4,
> [T Gz, x_) for n even
pairings (i+,i_)

{6400}

where G/, y) denotes the kernel of operator G which is smooth for & # y and exhibits a coinciding
points singularity ~ Indist(z,y) for d = 1 and ~ dist(z,y)~**! for d > 1. Such a definition of
the correlation functions is additionally substantiated by the fact that there exists a probability
measure du. on the space of distributions D’'(X) such that

Ger) - dea)) = [ ola) - 6lwn) dug(0)

D'(%)

where the equality is understood in the sense of distributions. ¢(x) may be then considered as a
random distribution.

3. Feynman-Kac formula

Some people in the audience may wonder what it all has to do with Minkowski space field theory
involving Hilbert space H, quantum Hamiltonian H and quantum field operators acting in H
since the (Euclidean) functional integral scheme has led us to entirely commutative structures
as the Euclidean random distributions ¢(x) which may, at most, be considered as a distribution
with values in commuting multiplication operators acting in L*(D'(X), du,). The relation of the
two schemes is provided by the so called Feynman-Kac formula. Let us start from a simple
quantum mechanical example.

Example 1. d =0, ¥ = [0, L] with the periodic identification of the ends and the standard
metric. In this case, du is supported by the space of continuous functions C,.,([0, L]) and is

essentially a version of the Wiener measure. More exactly, it differs from the latter by the density
gm?

L 2
~ e Zm Jo #(@) . Suppose that 0 <z <y, < ... <z, < L. Then

tr e~m1H , oleri—22)H , ..., alzn—L)H
[ bl oan) digld) = pet My g 5

tr e
Cper([0,1])

where

. T d? Bm2 9 mo T d Bm T d Bm o *
H=-gizt5v 3= m(—\/ﬁ—m@ﬂ/?@) (\/a—maﬂ/H@) = maa

is the Hamiltonian of a harmonic oscillator acting in L*(R,dy). a and its adjoint a* satisfy the
canonical commutation relation

[a,a] = 1.

5



The ground state € of H is proportional to e~ and corresponds to the zero eigenvalue. () is
annihilated by ¢ and the higher H-eigenstates are obtained by aplying powers of ¢ to €1, each
a* raising energy (i.e. eigenvalue of H) by m (a is called the annihilation and «* the creation
operator). Hence the spectrum of H is {0, m,2m,...} = mZ,. With the use of the orthonormal

basis (\/Ln—'(a*)”ﬂ)gil composed, up to normalizations, from the Hermite polynomials H,,( ﬁTm ©)

times €2, .LQ(R, dy) may be identified with (the Hilbert-space completion of) the symmetric
algebra SC (the bosonic Fock space over C). Note that

p = &(Wra*)-

Problem 1. Consider formula (3) for the 2-point function.

(a). Use the Fourier transform to write the left hand side. Show that its [ — oo limit G (21, 22)
exists.

(b). Prove that for xy,...,x, > 0 and complex numbers Ay, ..., A,,

Z j\k)\lGoo(_wkawl) 2 0. (4)
k=1

(c). What is the L — oo limit of the right hand side of Eq. (3) for n = 27
(d). Show that both sides of Eq. (3) with n = 2 coincide at L = co. Prove (b) using this result.
(e). Prove relation (3) for n = 2 and finite L.

It may be more natural to read the Feynman-Kac formula from the right to left. e=" (¢, ¢') is
nothing else but the transition probability to pass from ¢ to ¢’ in time = which may be used
to define the Markov process ¢(x) with the measure on the space of continuous realizations
coinciding with dy,.

Example 2. d >0, ¥ = [0, L]**! with periodic identifications. Now dy., is carried by genuinely
distributional ¢’s. Let (xz; = (29,%;))", bes. t. 0 < 2y <2y < ... < 2? < L. The Feynman-Kac
formula now takes the form

tr e—x?H¢(X1) e(x(l)—acg)H x0—LYH

%) - o(x,) el
[ tlen) - blan) dug(o) = Pl e fl) (5

tr e
D'([0,L]9+1)

where the quantum Hamiltonian H is a positive self-adjoint operator in the Hilbert space H, a
tensor product of an infinite number of harmonic oscillators, one for each Fourier mode ¢k of the

classical time zero field px = Jig 154 e®Xp(0,x) dx:

H= & LYC,d%px).

2
tke =L Z4d

e Bho
Gk =\ G dor T\ arnd Pk

The annihilation operators




where kg = vk? +m?, and the creation operators aj adjoint to them satisfy the canonical
commutation relations

[ax, ag,] = dk

with all the other commutators vanishing. The quantum (time zero) field is

o0 = 2\ o e o+ )
k

H = Zko ayax
k

The Hamiltonian

8k
has € ~ e2ok az27 96 g the ground state annihilated by all ax. The spectrum of H is >"y koZ .

There are three natural ways to look at the Hilbert space H:
i/. H is an infinite tensor product of oscillator spaces L?(C, d*pk) (how should it be defined?);
ii/. H is the Hilbert space completion of the symmetric algebra S(lz(%zd)) =~ S(L*([0, L]%));
this is the Fock space picture;

iii/. H is a space of functionals of variables @i or of the time zero classical field ¢(0,x)
obtained by acting by creation operators aj on the vacuum functional {2.

One may introduce the (Minkowski) time dependence of the quantum field by defining

eitH —itH ]

p(t,x) = e p(x) e

Problem 2. Show that

p(tx) = 3\ e (7K gy el gy, (6)
k

The infinite volume limit L. — oo of the formulae for H and ¢(¢,x) may be easily taken if
we introduce operators a(k) = L%2ay. In the limit one obtains the operator-valued distributions
a(k) and their adjoints a*(k) acting in the Fock space S(L2(R4,dk)) (¢k = dk/(27)?) and

satisfying the commutation relations

la(k), a*(K)] = (27)"6(k — k').

By identifying L?(R%, @k) (by multiplication by /2ko) with the space of functions on the upper

mass hyperboloid {(ko,k)} square-integrable with the Lorentz-invariant measure %, one obtains
the Minkowski scalar free field of mass m constructed in more abstract and explicitly Poincare-

covariant way in David Kazhdan’s lectures (check it!).

4. Massless free field with values in S!



Let us pass to the next case where (¥,v) is again a general compact (d 4 1)-dimensional
manifold, M = R/27Z = S' and the action functional is that of the massless free field:
S(¢p) = ﬁ J,, ld¢|*dv (note that 3 has a natural interpretation of square of the radius p of the
circle if we rewrite the classical action as 7= [ |d¢|*dv but use the metric p?dé? on the target).
This is the case of a conformal (invariant) field theory with the conformal group acting (pro-
jectively) in the corresponding Hilbert space of states, transforming covariantly field operators.
We shall get there slowly discussing in more detail the d = 1 case where the conformal group
is infinite-dimensional, essentially = Dif f(S') x Dif f(S'). Let us start with an elementary
treatment of the functional-integral.

How should we view the space of maps from ¥ to S'7 A convenient way is to define

Map(S,R/27Z) = U Map(S,R), [ 2nZ

x€Hom(m1(X),27Z)

where ¢, € Map(i, R), is a a function on the universal cover Y of ¥ equivariant with respect
to the action of the fundamental group:

Oy (ax) = oy (x) + x(a) for a € m(X).

Note that this definition makes sense for maps of arbitrary class (smooth continuous or distribu-
tional). Hom(m(X),27Z) =2 HY(X,27Z) with y given by the periods of o € H'(X,27Z). Each
¢y € Map, may be uniquely decomposed according to

o= [ ot =gty (7)

where ay, is the harmonic representative of a € H' corresponding to , zg is the base point of X
and % is a univalued function on ¥. For the free field action we obtain

S(dy) = Cllanll?, + = (v, —A¥)

(there is no mixed term, why?). This suggests the following definition of the functional integral
for the partition function of the system:

7 = / 5@ Db = Y el / S I P

Map(Z,S1) a€HY(2,27Z) Map(S,R)

1/2
27 vol
N (deu_;;)) )

a€H(Z,27Z)
where in det’ the zero mode should be omitted (it contributes the factor /27 volg, where voly, =
Js. dv, to the functional integral, why?).

Example 3. d =0, ¥ = [0,L],,. In this case, o = 2Zndx and an easy calculation (see
Problem 4 below) shows that

det'(— 22y = 271%/3.

2 da?



Hence the d = 0 partition function

1/2
_ —1,2 2nL —mB~ Ln? -LH
Z = € mAL™n = — (] =B "= tr e
Z det/(_ =N i) Poisson Z

neZ 27 dz? resummation nEZ
where now H = —Z % is the operator acting in L?(R/27Z, dy) with the eigenvectors %, n €

Z, corresponding to eigenvalues mn?/3.
Problem 3. Prove for 0 < a; <...<uz, <L and ¢; € Z the Feynman-Kac formula

n
/Heiqm(xi) e—% J;L(d¢/dl’)2 Dé = tr o1 H gine ((w1—w2)H Jigae | Glany o(zn—L)H
=1

where the functional integral over Map([0, L], S*) on the left hand side is computed as the one
for the partition function Z treated above. Infer that the left hand side may be also expressed

as the expectation (e/®?(#1) ... eimd(@n)Y) w 1. t. the Wiener measure on the periodic paths on
St constructed from the transition probabilities e = (¢, /).

Let us discuss in greater detail the case d = 1 when (X,v) is a Riemann surface of genus
hy, with a fixed metric v (inducing the complex structure of ). Let us chose a marking of ¥

(a symplectic b@ses (al, bf)i,};i; of Hﬂl(Z, Z)) with the corresponding basis (uﬂ)lhfl of holomortphic
1,0-forms, [ w’ =6, [ w’ = 7. The imaginary part 7, of the period matrix 7 = (7%) is
positive. The equation

ap = Z(Tm+n)'r,'w + ce
for m,n € Z¢ gives the harmonic forms in H'(X,27Z) (with a;-periods —27m; and b;-periods
27mn;).
lanl?, = (27)*(Fm + n)'7,” (rm + n)

and the sum over « in eq. (8) may be done explicitly. After Poisson resummation over n, one
obtains the following result

Z o i llonll?, 5—h2/2(det 7.2)1/2 19%(7.77:) (9)

a€HY(X,2rZ)

where the “theta function” 19% is defined as follows. Let E, be the s-dimensional Euclidean space.

Let () be a lattice in E,, ,_ = E,, ® E,_ considered with the indefinite metric | - |E215+ — |- |E215_'
Then
D (7, 7) = Z ™ (a+,7a4) —mi(a-,7q-)
(04.4-) €Q™

where the decomposition ¢ = (¢4, ¢-) is according to that of E . Above,

S4,5_

BU2may =120 BU2m_pg=1/2y
Qs = {( 35 ) 7 ymmneZ} c ReOR.



Inserting the relation (9) into eq. (8), we obtain

7 = Zﬁ — e(—6ln27r—|—111nﬁ/2)(h2—1) 19@ (7_ 77_) (v;)lz (de£7)'2)1/2
g\ et/ (— :

From eq. (8) it is obvious that the right hand side is marking-independent. Technically, this is
due to the fact that, in the indefinite scalar product, the lattice @5 is even (scalar-products are
integers, scalar squares are even) and self-dual.

We may discard from Z any factor of the form (const.)">~! by the addition to the action of a
term proportional to the integral of the scalar curvature r of ¥ since [ rdv = 4n(1—hy). Doing
that we discover a somewhat miraculous equality

Zs = Zygs, (10)

a consequence of the obvious identity Qg = Q1/3. More directly, identity (10) follows from the
Poisson resummation formula applied to the left hand side of eq. (9) and the fact that the lattice
H(X,27Z) with the L? scalar product is isomorphic to its dual (the isomorphism is induced by
the intersection form). Eq. (10) is the simplest manifestation of the so called T-duality which
states that the 1 4+ 1-dimensional massless free fields with values in the circles of radius p and of

radius p~! are indistinguishable. This identification of inverse radia of free field compactification
has a deep meaning in the string theory context and we shall return to it in a later discussion.

On the genus 1 curve T, = C/(Z + 7Z) with 7 in the upper half plane and the standard

metric,
det'(=A) = = [n(7)|*

where (1) = e™7/12 ]O_O[ (1 —e?™7) is the Dedekind eta function.

n=1

Problem 4 (a relatively complex calculation, going back to Kronecker 1890).

(a). Using the identity A=% = 7(s)7! [;°¢*"Le ' dt show that ((0) = —% annd ((—1) = —%
where ( is the Riemann zeta function ((s) = ioj n~* (for Res > 1, analytically continued
elsewhere). =

(b). For 7 = 7 + imp, with 7, real, » > 0 show using the identity from (a) and the Poisson
resummation that for Res sufficiently large

- —2s __ \/7_r
> Im+n - F(s)(

n=—0oo

Z 627rin7'1 /OO t5_3/2 6—7'22t—7r2n2/t dt + 7_2—25—|—1 ? (S . 1/2)) )
0

n#£0

Note that the right hand side is analytic in s around s = 0. Using (easy) relations ?(s)™! =
s+ 0(s?), 7(—%) = =2/ and [§° 17322t it — \/E:L'_l/ze_zl’ obtain:

d

ds

Z:|7'—|—n|_25 = —In|l —q* — 277y
s=0 n

10



with the standard notation ¢ = e?™7.
(c). By taking 7 — 0 in the last formula show that ('(0) = —% In(27).

(d). Prove that for the periodic b.c. operator % on [0, L] the zeta-regularized determinant

det'(= 22y = 2n12/8.
(e). Show that the spectrum of the Laplacian A, on the torus C/(Z + 7Z) in the metric |dz|*

is given by A, = —(27—2)2 |Tm + n|* for n,m € Z.

(f). Proceeding as in (b) decompose

S Jrmnl™ = D0 |rm4 |7 + 2((2s)

(m,n)#(0,0) m#0, n
_ VT 2mimnT o s—=3/2 —m272t—n2n? —2s+1 _—2s+1
= (mzn;éoe 1/0 15732 ¢ 3t /tdt—l—m%é:Om + T, + ?(5—1/2)) + 2((2s)

and show that (after analytic continuation)

Car(s) = > () ==1—=-2sIn| J[J(1—¢™) —2sInm + %7’[’7’28.

(m,n);ﬁ(0,0) m=1

Infer that
(-ar(0) = —1, (Car(0)=—=21In] [Ma—¢M)P? —2nn + %7‘[‘7—27
m=1
and that
det'(=A;) = 3 In(7)|*

where the Dedekind eta function n(r) = ¢'/%* ]O_O[ (1 —q").

n=1
Hence in the genus 1 case,
Z = Zs(r) = Do (7)) (7)1 = Zyp(7). (11)

The marking independence (together with the independence of Z; on the normalization of the
flat metric on T, see below) implies that Z(7) is a modular invariant function

at+b
Zs(7) = Zs(Z5)

for (¢ b) e SLy(Z).

11



5. Toroidal compactifications: the partition functions

The above discussions may be easily generalized to the case of “toroidal compactifications” i.e. to
the case of massless free field on (3,~) with values in the N-dimensional torus TV = (R/27Z)".
Fix a constant metric g = 37, gi; dé'd¢’ and a constant 2-form w = > i big dé' A de’ on TN and
define the classical action of the field ¢ : ¥ — TV as

56) = g (ldol?, +i [ &), (12)

Applying the same method as before (do it!) results in the formula

o _ voly, detmy N/
Z = Zd = ﬁQd(T,T) m = Zd—l

-duality again!) where d = (d;; = ¢;; + b;;) and the lattice
T-duali gain!) where d d; i+ bij d the latti

Qd:Qd—l :{(dT\n/;n7dtm\/_2_n)|m,n€ZN} C RN@RN

is an even self-dual lattice in RY @ R with the indefinite scalar product |(z,y)|* = (z, g7 ) —

(y, g7 'y). At genus 1

Z = Zr) = Oy, (n7) n(m) N = Zia(r) = Zo(S22).

Example 4. Let T be the Cartan torus of a simply-laced, simple, simply-connected Lie group
(the compact form of the A, D, FE groups). By spanning the Lie algebra of T' by the coroots

o), we may identify T with TV where N is the rank of the group. Let g;j = &tr of of where tr
is the Killing form normalized so that g; = 1. We may write

2gi; = dij + dj;
for some integers d;; and set
Qbij = dij — d]‘i

so that d;; = gij + b;j. The corresponding action of the toroidal compactification coincides (mod
27mi) with the action of the WZW model with fields taking values in the corresponding simple

group (the ~ [ ¢*w term is the remnant of the topological WZ term). Defining for p¥ € (PV)"=,
where PV is the coweight lattice dual to the root lattice,

7rit \ VYt o (pY \
PGS ED DR
qu(Qv)hg

one obtains

Vo, (1,7) = > (D

[pVIe(PY/QV)"

12



In particular at genus 1.

J_, o (7))2
Za(t) = Q(:)N = Z |Ch[1pv](7')|2 (13)
[pV]EPV/QV 77 [pV]EPV/QV
where ch[lpv](r) = %VN(T) runs through the characters of the level 1 representations of the

corresponding Kac-Moody algebra. In particular, for the Eg case PY = @V and the partition
function is the absolute value squared of ch)(7) which is a cubic root of the modular invariant
function j(7). In general, the right hand side of eq. (13) coincides with the genus 1 partition
function of the level 1 WZW model. This remains true for higher genera and for the complete
CFT’s which is another miraculous coincidence of field theories with fields taking values in quite
different target spaces (e.g. the SU(2) WZW model at level 1 is equivalent to the free field with

values in S of radius 1).

The fact that the toroidal partition function (13) is a finite sesqui-linear combination of
expressions holomorphic in 7 is a characteristic feature of rational conformal theories.

Problem 5. Show that the free field compactified on a circle of rational radius squared (= 3)
is rational in the above sense.

For free fields with values in the Cartan tori of simply laced groups described above, the general
partition functions are hermitian squares with respect to Quillen-like metric of holomorphic
sections of projectively flat vector bundles over the moduli spaces of curves. We shall return to
these issues during a more detailed discussion of the WZW models.

Example 5. Consider the toroidal compactification to 7' equipped with the complex structure
induced by the complex variable ¢ = ¢' +T¢* (T is in the upper half plane) and with a constant
Kéhler metric g = (Ry/Ts)dpdyp with Ry > 0 and a constant 2-form w = «(Ry/T5)dy A dip. Set
R = Ry + 1R,. The partition function of the corresponding free field is

_ vols: det 7
Z = Zpr =Y, (1,7) (fuﬁ)

where
. RmI4+TRm24Tn'—n?2 Rml4+TRm2+Tnl—n2 i1
QR7T - { ( /2R2T2 Y /2R2T2 ) | m 7n E Z } C C @ C

with the indefinite quadratic form |(z1,22)[* = |21]* — |22/*. Note that Qr.r may be obtained
from Qg1 by complex conjugation on the second C. We infer that

Zpr = ZrR (14)
which is the simplest instance of mirror symmetry claiming identity of CFT’s with fields in two

different Calabi-Yau manifolds with the role of modular parameters of complex and (polarized)
Kahler structures interchanged.

Problem 6. Show that, besides the relation (14), the partition function satisfies the identities
ZR7T(T) == ZR_|_17T(T) = ZR7T_|_1(T) = ZR7_T—1(T) = Z—R—l,—T—l(T)a
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which imply the separate SL3(Z) invariance in R and 7.

In general, the moduli space of N-dimensional toroidal compactifications is a double coset
O(N) x O(N)\O(RN sRY,( °); RV aRY, (0! /o RY &RV, (°1)|2)

(in a, hopefully, self-explanatory notations) which coincides with the moduli of even self-dual
lattices in R @ R with the indefinite scalar product.

The action functional (12) of the (compactified) two-dimensional massless free field uses only
the conformal class of the metric v on ¥. The regularization of the free field determinants
reintroduces however the dependence on the conformal factor of the metric, an effect called
conformal anomaly. More exactly, one has

) det’'(—A) . 1
So(x) — 1H< voly, ) - _Er(x)7 (15)

where r is the scalar curvature of ¥, or, denoting the metric dependence of the partition function
by the subscript,

r(x) Z. (16)

Problem 7. Prove the relation (15) using the identity (_a(s) = 7(s)"" f° " " tre® and the
short time expansion of the heat kernel of —A:

Bla,2) = o7 + gr(e) + O)

€ 4t 127

Problem 8. Prove that the infinitesimal relation (16) is equivalent to the global one

fuy = etz 4 4 orst) 7 1)

6. Toroidal compactifications: the correlation functions

Besides the functional integrals for the partition functions, we would like to study the ones for
the correlation functions of the massless field with values in S! of the type

VN v
/ [ e’ e JslioPdv pg.
=1

for integer ¢;, see Problem 3 for the d = 0 example. This may be attempted by the same strategy
as before by separating the field into the harmonic and univalued part, as in eq. (7), and then
summing over the first and integrating over the second. This gives the expression

S e —Lllanly +i3, aidnlw) /e £ (0=80) 2 41350 (@) [y

a€H(Z,27Z)
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The sum over H! may be expressed by partial Poisson resummation as an explicit theta-function.
As for the functional integral, it may be formally performed by mimicking the finite-dimensional
formulae:

/e_gw,—Aw)Lwtiwl‘) Dy = 52

7

i:0

n 1/2
det'(—%A)
where the Kronecker delta is contributed by the integral over the constant mode of i and
G(z,y) = G(y,z) is a Green function of A satisfying A,G(x,y) = d(z,y) — == (the constant

voly
ambiguity should drop out above due to the vanishing of 3~ ¢;). The obvious problem with the
above formula is that

Glx,y) = % In dist(z,y) + finite

when y — @ so that G/(x,x) is not defined. This is a standard problem with the short-distance
singularities due to distributional character of typical configurations in the Gaussian free field
measure. A possible treatment is to renormalize the above expression by replacing the divergent
contributions by their finite parts

G(x,z) = lim G(x,y) — % In dist(x, y) (18)

Yy—x

Upon division by the partition function, all this leads to a well defined renormalized expression
for the correlation functions which we shall denote by

<: eiqlé(m) P eiqn¢(xn) :>W

where the colons remind the renormalization procedure (which is closely related to the Wick
ordering discussed in Kazdan’s lectures). The correlations depend on the “charges” ¢; and posi-
tions x; but also on the metric 4 on ¥ which is signaled by the subscript. In particular, on CP!
with H' = 0, one may take G(z,y) = & In|z(z) — 2(y)| in the standard complex variable and
for the metric g = e’ dzdz with a conformal factor €7, we obtain, setting z; = z(x;),

2 9i4;

e L) ] |z — )| 7 (19)

<: eiq1¢(l’1) - :e’iQn(b(l’n) :>’V = (Szl 4,0

The dependence on the conformal factor of the metric is solely due to the renormalization (18)
and persists in general:

where A; = % are the conformal dimensions of the (Euclidean) fields : e'%? :. The generalization

to the toroidal compactifications is straightforward. The conformal dimensions of fields : e*? :
where ¢ € Z" is now +(q,97'q).

The operator picture of the the free field compactified on S is as follows. The quantum
Hibert space is

H = L}(S' deo)? @ F @ F.

15



Above LS, dpo)? is the infinite sum of copies of L?(S!), each labeled by an integer (“winding
number”) w. The Fock space F is generated by applying operators a,, n = —1,—-2,..., to a
vector annihilated by «, withn =1,2,...,

[, ] = N i ol =a,,
and F is another copy of F. Let |p, w) denote the function #eim’ in the w' copy of
L*(S',dpo)?. Integer p is the eigenvalue of the operator py = 1-Z. H may be generated

1 deo
by applying operators «,, &, with negative n to vectors |p,w). The (multivalued) free field
operator (with time dependence) is given by

o(t,z) = o + B 'pot + wa + ﬁg(%ﬂe—mm _ i_ne-z'(t_gg)n)‘

The relation to the m — 0 limit of the massive free field on periodic interval of length L = 27
given by eq. (6) should be evident. Modulo the constant and winding modes, for n = 1,2,...,

o, = —i/na_,, a_, =1yna,, &, =1i\/na,, a_,=—1\/na.

The relabeling allows to separate the left-moving part (involving ) from the right-moving one
(containing &). The one-handed parts of (¢, x) are called chiral fields (the zero modes can be
separated too). For the uncompactified massless free field, the k = 0 mode contributes to the

Hamiltonian the term ~ —d*/dpi acting on L*(R., dpo) which has continuous spectrum. The
compactification of the field (and consequently of its zero mode), restores the discreteness of the
energy spectrum.

Hilbert space H carries a representation of two commuting copies of the Virasoro algebra
with generators L, and L,. Explicitly,

1
L, = 3 Z DO, Oy,

meZ

(creator to the left of annihilators) and similarly for L, where we have set ap = %(ﬁlﬂw +
ﬁ_l/zpo) and &y = %(ﬁl/zw —ﬁ_l/zpo) . The quantum Hamiltonian H = Lo+ Lo. P = Lo — Lo

generates the space translations. © = |0,0) is the ground state of H (it is also annihilated by
P).

Problem 9. Show that L,’s indeed satisfy the Virasoro algebra relations (with unit central
charge)

[an Lm] = (n - m) Loym + % (n3 - n) 5n7—m

Let us introduce the “vertex operators”

Vi(t,z) = s elee(t)
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defined as the (formal) power series in o, and &, reordered by putting the creation operators
with negative n indices to the left of the annihilation operators corresponding to positive n and
also g operators to the left of pg.

Problem 10. Using the operator relation e?e? = ePedelhPl holding if [A, B] commutes with
A and B, show that for t; <ty < --- <t,,
q,‘q]
(Q7 ‘/ql(ithxl) ‘/qn(ltn7xn)ﬂ Z ¢;,0 H|Zl

1<J

where z; = e~ This, together with eq. (19), provides a spherical version of the Feynman-Kac
formula.

In variables z = e!(t*%) and 2 = ei(t_l’), the commutation relations of L,’s and L,’s with the

vertex operators take the form

[Ln, Vi(2,2)] = (n+1)AZ"V,(2,2) + P 0. Vy(z,2), (21)
(L, Vi(2,2)] = (n+1)AZ"V(2,2) + 2 0:V,(z,2)

where above A = £ or A = 1(q, g7 '¢) stands for the conformal dimension of the operator. Later

on, we shall see that these relations essentially follow from eq. (20) and the general covariance
of the corresponding correlation functions. In the professional jargon, the fields satisfying such
commutation relations are called primary Virasoro operators.

On the level of the Hilbert space H = Hg, T-duality becomes the unitary transformation
Ur: Hz — Hyp such that

Urlu,w) = (=1)*|w,u) and Ure, = o,Ur, Uré, = —é,Ur,

where, for u,w € Z, |u,w) denotes the function #ei“% in the w-component of L%*(S!, deg)%

Ur intertwines the action of the Virasoro algebras in Hg and H;,3 and maps the vertex operators
in Hg to new operators which should be considered on the equal footing with the original ones.

Up to now, we have considered only S'-valued free fields with periodic boundary conditions.
In string theory aplications, one also considers fields on space with boundaries and with fixed
boundary conditions like the Neumann ones (open strings). Quantizing such fields on space
which is an interval [0, 7] (d = 1) one obtains quantum field

Z i(t+z)n + ﬂe—i(t—x)n)
n;éO "

PNt x) = 0o+ B!

which may be realized in the subspace of the periodic b.c. Hilbert space ‘Hz generated by applying
operators %(an — &,) = alY with negative n to vectors |u,0). The T-duality maps this field

into the one corresponding to the Dirichlet boundary conditions

@D(tvx) = o + wr + — Z i(t+a)n ﬁe—i(t—x)n)

n
n;éO
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where g is fixed modulo 7Z. P(¢,x) acts in the subspace of Hi/s generated by applying
%(an + a,) = a? to vectors |0,w). In toroidal compactifications with more dimensions of the

target, one may have mixed ” D-brane”-type boundary conditions with some coordinates of the
field fixed to prescribed values at the ends of the space-interval [0, 7].

Problem 11 (Massless fermions on Riemann surface).

Let (¥,7) be a Riemann surface. Spin structure on ¥ may be identified with the square root
L of the canonical bundle K = T*°(¥). A Dirac spinor ¥ = (3, 9)) is an element of ? (L & L)
where [ is the bundle complex conjugate to L. The conjugate spinor is ¥ = (x,x) € (L & L)

and in the euclidean Dirac theory it should be treated as an independent field (x =, ¥ = ¢
for Majorana fermions). Denote by Jp the J operator of L and by 9z its complex conjugate
which may be naturally identified with 9;°. The action is a function on the odd vector space

M (L& L)s N (Lal)):
SU.W) =~ [ (O + 11)

(note that the integrand is naturally a 2-form). Partition functions of the Dirac fermions are
given by the formal Berezin integral

7y = / ¢S DG DY = det(dy) det(d) = det(F;dy).

The last determinant may be zeta-regularized giving a precise sense to the partition function 7

of the Dirac field on .
On the elliptic curve C/(Z + 7Z) with 7 in the upper half-plane, the canonical bundle K

may be trivialized by the section dz and spin structures correspond to the choice of periodic or
anti-periodic boundary conditions under z — z 4+ 1 and z — z + 7:

L = pp, pa, ap, aa.
(a). Show that the eigenvalues of 970y, are

A = (%)2 |7m + n|2

with
m € 7, nez for L =pp,
meZ, nel+1t for L = pa,
meZl+1L, nez for L =ap,
meZd+1L, necZ+3 for L = aa.

(b). Infer that

(c¢). Show that



Infer from Eq. (11) that

Zypa(7) = 4" TI + ")

n=1
In the Hilbert space picture

Zpa(T) = trHR@ﬂ:lR qL°_1/24qE°_1/24. (22)

The “Ramond sector” Hilbert space is Hr ® Hp with
o\ ©2
Hp = C* o (/\( @_910)) (23)

and Hp is another copy of Hp. Lo acts in the first copy. It has eigenvalue é on C? (the
“Ramond ground states”) and the occupied n® mode in the fermionic Fock space adds n to it.
The periodic partition function is

pr(r) _ trHR@)?-?R (_1)F+F qL0—1/24qE0—1/24 — StrHR@)?-ZR qL0—1/24qE0—1/24 (24)

where (1,0),(0,1) € C? correspond to the eigenvalues +1,—1 of (—1)F and each occupied
fermionic Fock space mode adds 1 to F'. Z,,(7) vanishes since modes with odd and even Fermi
numbers are paired.

(d). Show that
Céa*péap(s) = 245C—A’T/2 (3) - 225§_A/T (S) and Zap(r) = |q_1/48 H(l _ qn+1/2)|4‘
n=0

The Hilbert space interpretation is

Zap(T) = Sy cofiys qL°_1/24qE°_1/24 (25)

where the “Neveu-Schwarz sector” Hilbert space is

oo ®2
Hysg = (/\( @0 C)) . (26)
The “Neveu-Schwarz ground state” has eigenvalue zero of Ly and the n'" occupied zero mode
contributes (n+ %) to 1t. The fermion number of the NS-ground state vanishes and each occupied
fermionic mode adds 1 to it.

(e). Show that

and Zaa(T) _ |q—1/48 H(l _I_qn-l—1/2)|4

T n=0

Copea(8) = 27 Conn, (8)] = Conppa(s)

T/2

and that

Zaal7) =ty copy. @70 MgV, (27)

(f). Prove the modular properties:

Zpa(T + 1) = Zpa(1), Zap(T +1)
Zpa(=1[7) = Zap(T),  Zop(=1/7) =

Zaa(T)7 Zaa(7'+ 1) = Zap(T)v
Zpa(T)s  Zaa(=1/T) = Z



Problem 12 Bosonization.

The spin structure is called even (odd) if the dimension of the kernel of 97, is even (odd). Denote
by o(L) the parity of L. The bosonization formula asserts that

%Z(—I)U(L) Zy = st Zi/2 (28)
7

where on the right hand side we have the partition function of the bosonic free field with values
in the circle of radius squared %, (' is a constant and A, the genus of the Riemann surface X.

These equalities extend to correlations. For example, the fermionic fields (¢¢)(z) correspond
to bosonic fields : @ : and (Yx)(z) to : e=*®) . What are their conformal weights? Prove
identity (28) for ¥ = C/(Z +7Z) using the expression (11) for Z;/5(7) and the classical product
expressions for the theta functions

19(2|7_) = Z e7ri7'n2-l—27rinz — H(l . qn)(l 4 e?wiz qn—l/?)(l + G_QWian_l/z).
neZ n=1

What is the Hilbert space interpretation of the left hand side of Eq. (28) on the elliptic curve?

In summary, by “calculating” the functional integrals for compactified massless free fields we
have constructed models of two-dimensional CF'T specified by giving the partition functions and
correlation functions on general Riemann surfaces. In the next lecture(s), we shall examine the
emerging CFT structure on a more abstract level.
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Lecture 2. Axiomatic approaches to conformal field theory
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Conformal field theory data

Conformal Ward identities )
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Virasoro algebra and its primary fields
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Segal’s axioms and vertex operator algebras

O Ot oo =

1. Conformal field theory data

In the first lecture, we have discussed a functional-integral construction of the simplest models
of CFT: the toroidal compactifications (of massless free fields). In this lecture we shall present
a more general approach to CFT which, although not overly formalized, will be axiomatic in
spirit using only the most general properties of the free field models. We shall assume that the
basic data of a CF'T model specify for each compact Riemann surface (X, ~) its partition function
Z, >0 and a set of its correlation functions (¢, (x1) -+ &, (2,) ), of the “primary fields” from
a fixed set {¢}. The correlation functions are symmetric in the pairs of arguments (z;,1[;), are
defined for non-coincident insertion points x; € ¥ and are assumed smooth. We shall also need
later some knowledge of their short distance singularities. The dependence of both the partition
and the correlation functions on the Riemannian metric v will be assumed regular enough to
assure existence of distributional functional derivatives of arbitrary order. The basic hypothesis
are the following symmetry properties:

(i) diffeomorphism covariance

Zy = Zpey (2)
(o1 (D(x1)) -+ ¢, (D(@n)) )y = (¢n(x1) - 1, (n) ) oy (3)

(i1) local scale covariance

Zeo'w — eﬁ(||da||i2+4fzardv) Zw 7 (4)

n

(Su (1) - Gu,(wn) )or, = TT €27 (1 (1) - o, () ), (5)

1=

where ¢ is the central charge of the theory. In (i), we limit ourselves to orientation preserving
diffeomorphism assuming that under the change of orientation of the surface,

Z, s 7, (6)
(o1, (21) = D, (xn) )y > (Dp (1) -+ D (20) )y (7)
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where ¢; — ¢; is an involution of the set of primary fields preserving their conformal weights
(: e 1 : e "% : for the toroidal compactifications). In what follows we shall first explore the
implications of the above identities which we shall, jointly, call conformal symmetries. Other
important properties of the correlation functions, for example those responsible for the Hilbert
space interpretation of the theory, will be introduced and analyzed later.

Let us define new correlation functions with insertions of energy-momentum tensor! by
setting

(Tuain (1) -+ T () &1, (1) -+ - P, (20) )
— T)m s
= ZW ! SyH1VL (y(lél)..).gwume(ym) ZW <¢h($1) o ¢ln(xn)>w ) (8)

-1

where v*7 0,0, = 7' is the inverse metric. In complex coordinates, energy-momentum tensor

has the components
T.=T.. and T, =T, =T..

By definition, the correlation functions (7,,,,(y1) -+ Lo (Ym ) &1, (21) - - qbln(:zjn) ), are distri-
butions in their dependence on yq, ..., y,,. As we shall see below, they are given by smooth
functions for non-coincident arguments and away from z;’s, but we shall also have to study their
distributional behavior at coinciding points.

2. Conformal Ward identities

Symmetries in QFT are expressed as Ward identities between correlation functions. Egs. (3)
and (5) are examples of such relations for group-like conformal symmetries. It is often useful to
work out also Ward identities corresponding to infinitesimal, Lie algebra version of symmetries.
We shall do this here for the infinitesimal conformal symmetries. The resulting formalism was
the starting point of the 1984 Belavin-Polyakov-Zamolodchikov’s paper. The approach presented
here is close in spirit to the 1987 article by Eguchi-Ooguri (to some extend also to Friedan’s 1982
Les Houches lecture notes). The general strategy is to expand the global symmetry identities to
the second order in infinitesimal symmetries. This will be a little bit technical so you might wish
to see first the results listed at the end of this section.

Let us start by exploring the infinitesimal version of the local scale covariance (4). Using the
definition (8), we obtain the relation

— § zz 2z zZz ¢
47Zw1§ _OZS‘W = =" (Tee)y =297 (Tez)y — 77 (Iz2), = sT- (9)
Note that if v = |dz|* then 7.. = 7z = v =177 =0, 7. = 1 and 7" = 2. Besides, the
scalar curvature of v vanishes. In such a metric, eq. (9) reduces to the equality

(T.z) =0 (10)

which states that energy-momentum tensor in a CFT is traceless (in the flat metric, tr 7}, =
4T,z ). 1t is the first example of Ward identities expressing the infinitesimal conformal invariance
on the quantum level. We shall see further identities of this type below.

Lcalled also stress tensor in a static view of the Euclidean field theory
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Notice that if 7 — ey with ¢ =1 around the insertion points then the correlation functions
do not change. Let us fix the complex structure of ¥ and holomorphic complex coordinates
around the insertion points of a correlation function. Call a metric v locally flat if it is compatible
with the complex structure of ¥ and of the form |dz|* around the insertions. For such a choice
of v we shall drop the subscript “4” in the notation for the correlation functions, like in eq. (10).
We may restore the full dependence on the conformal factor by using the covariance relations (4)
and (5). For example, for (7.,),, we obtain

(T)or, = (T)s + gy (10013 44 [ ordo). (1)

¥ 24 b+

In order to compute the functional derivative on the right hand side, we shall need the following

Lemma. Let v** = 4%* = 2. To the first order in %%,
1 zz zZzZ
L ] 12

Proof. Consider the inverse metric y7' = ** 92 + 40,0, + v*?0%. To compute the curvature to
the first order in v** we shall change the variables to z’ = z+((z, Z) so that in the new coordinate
the metric is (4 4 p)0.0z . Since

0. = (140.000+ (0.0, 0: = (0:0)Dr + (1 + 0:0) 0

then, retaining only the terms of the first order in v**, ( (and their complex conjugates), we
obtain

YT = (7 = (077 — (9:7)C + 297 0.C + 40:0) 07,
+ (44 40.¢+40:C +279770.C + 2777 0:() 0.1 0=

+ (77 = (0:47)C = (0:977)C + 29770:C + 40:0) 0% (13)
(we have kept more terms then needed for the Lemma for a future use). The requirement that
7' = (4 4 p) 9.0 means in the leading order that d:( = —%+**. Hence to the first order in
,.)/ZZ

P = =00 log (1 +0.C +0:C) = 10:0.(0-C + 0-C)dz A dz
— 5 (27 + 277

where v’ is the new volume form equal to £dz A dz in the 0% order.
Using the Lemma and the relation ||do||7. = [ (9,0)(0,0)¥" dv, we obtain the relation
i (Mot +4 [ orde) = —20% + (0.0 (14)
P

which, substituted into eq. (11), gives the dependence on the conformal factors of the expectation
value of T, :

(1) cosear = (1) = 13920 = 5(0.0)°) . (15)
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What are the transformation properties of (7..) under holomorphic changes z — 2 = f(z)
of the local coordinate? Under such replacements the notion of a locally flat metric changes
accordingly. By the diffeomorphism covariance and eq. (15), we have

(%)2<T2/ZI> - <TZZ>|dz’/dz|2dzd2
— (1) - = (ajlog(dz'/dz)-— %(6glog(dz’/dz))2)

c d3z' [dz? 3, d2z2'[dz? 2 c

The function {z’;z} is the Schwarzian derivative of the change of variables. As we see, in
the correlation functions with locally flat metric, 7., does not transform as a pure quadratic
differential under general holomorphic changes of variables. The transformation law (16) defines
what is called a projective connection on X.

Problem 1. Show that the Schwarzian derivative {z; z} vanishes iff 2/ = % with (¢ %) €
SL(2,C), i.e. for the Mobius transformations.

The further information about the correlation functions with energy-momentum tensor inser-
tions will be obtained by studying deviations of the metric from the locally flat one. Applying

to eq. (9) the operator 22— 7. at v locally flat? and using eq. (12), we obtain

Loy dyww

70Oz —w) (1) + (T Tiz) = T 0269(z —w) | (17)

where 62 stands for the two-dimensional d-function. Let us explore now the implications of the
diffeomorphism covariance (2) and (3). Under an infinitesimal transformation

D(z) = 2+ ((z,2) = &, (18)

the change in the inverse metric §y=' = /7' — ~~

(13):

1 where D*y' = v, may be read from eq.

0y = =(0:97°)¢ = (0:97)C + 297700 + 40:C
877 = 20.¢ + 20:C + 77 0.C + v770:(
577 = (09771 — (09771 + 297°0:C + 40.C

The diffeomorphism covariance implies that

| (T 097 + 2T}y 87 4 (Tos)y 8977 dv = 0.

b

Inserting the expressions for §v~!, stripping the resulting equation from the arbitrary function

¢ and retaining only the first order terms in 4% around a locally flat metric, we obtain

(07 )(To2 )y + 20: (777 (T22)y) + 40:(T2),

w and z refer to the complex coordinates of two nearby insertions taken in the same holomorphic chart

2
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+40.(Tez)y + 20:(77(Tiz)) + (0:977)(T52) = 0. (19)
Specializing to v%* = 0, we infer that

More generally, the component 7., (7::) of energy-momentum tensor is analytic (anti-analytic)
in correlation functions in a locally flat metric and away from other insertions. Eq. (20) is another
conformal Ward identity.

At coinciding points, the correlation functions of energy-momentum tensor give rise to sin-
K

gularities which we shall study now. Application of Z_VM%ZW at v locally flat to eq.(19)

gives:
7 (0.09(2 — w)) (To.) + 27060 (2 — w) (Tuw) + 0= (Toe Tus) + 0-{Toz T} = 0 .

Using eq. (17) differentiated with respect z in order to replace 0,(T.: Ty, ) in the last relation,
we obtaln

0= T Ty = — (0602 —w)) (T2) — 70.6@) (2 — w)(T) — T2 026 (2 — w)
T a3 (2 2 2
= -4 25( )(Z —w) — 27,5 )(Z —w) (Tyw) + 7§ )(Z — W) Oy (Tpu) -

This is a distributional equation. Since §®)(z —w) = %85 Z_lw in the sense of distributions, it

follows that
c/?2 2 1
zZ Tzz Tww = Uz Tww — Uy Tww 5 21
06 (1) = 00 (Lo )+ 0T 2

which is still another conformal Ward identity. Since the only solutions of the distributional
equation J:f = 0 are analytic functions, one may rewrite the identity (21) as a short distance
expansion encoding the ultraviolet properties of the CFT:

(T.. Ty = /2 g 2 )2<Tww>—|- !

(z —w) (z—w

D (Tus) + -+ - (22)

Z— W

where “. . .7 stands for terms analytic in z around z = w. The complex conjugation of eq.

(22) gives the singular terms of (7T ), this time, up to anti-analytic terms. Expansions of
the type (22) are usually called the operator product expansion (OPE) in accordance with
the operator interpretation of correlation functions to be discussed in the next section. We shall
follow this terminology.

What about the mixed insertions? Differentiating ( 7, x ) eq. (19) with respect to v“* at v
locally flat, we obtain

82<Tzz Tww> + az<Tzszw> + 7(825(2)(Z—w))<T22> =0.

With the use of the complex conjugate version of eq. (17) to eliminate (7.: Tiz ), this reduces
to
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which, stripped of 0;, gives
T 2
(1o Toa) = — 2 0.0: 69z —w) + ..., (23)
i.e. a contact term with support at z = w plus a function analytic in z and anti-analytic in w.

The other source of singular contributions to the correlation functions of T., or T:; are

insertions of the (primary) fields ¢;(«). Let us compute these singularities. Proceeding similarly

as before, we apply Z% % to Zeoy (¢1(2)),., at o =0 and v locally flat obtaining with the help

of eqgs. (4) and (5) the relation

(Tez di(w,w)) = 7 A5z —w) (di(w, w)) (24)

(we have replaced the point x in the argument of ¢; by its local coordinate w and its complex
conjugate to stress the non-holomorphic dependence on  of the ¢;(x) insertion). Next we
exploit the diffeomorphism covariance. For D(z) =z 4 ((z,2) = 2’ and v = D*+',

(du(w, @) )y Zop = (w0, 0) ) Zs, -
Since for ~ = |dz|?
v = ()T =T = 40007 + 4(0.C + 9:0)0-0: + 4(0:) 02,
to the first order in ¢, see eq. (13), we infer that
76D (2 —w) Dy (Gi(w,©)) — 0z {To pil10,®)) — 0. (1o di(w,@)) = 0 .

Using the last equation to eliminate 0, (T.; ¢;(w,w)) from eq. (24) acted upon by d., we obtain
the relation

O (T dufw, ) = = AT (= — w) (G, 0)) + 76Oz = w) D, (én(w, @)

which may be conveniently rewritten as an OPE of the product of the 7., component of energy-
momentum tensor with a primary field:

(o) = (2 + 20 o) + (25)

z—w) Z—w
Finally note, that under the holomorphic change of the local coordinate z — z' = f(z)
_ _ dz! _
(a1(,2) = (D1(%:2)) e = 1| (S1(2,2))
(&, 2)) (d=) (=) = (n(=,2)) (d2) " (d2)”

so that ¢; behaves like a (A, Aj)-form in the correlation functions with locally flat metric.

—24,

or

One often needs to consider also primary fields with weights (A, Al) and A; — A, integer (or
half-integer). d; = A; 4+ A; is the scaling dimension of such a field and s; = A; — A, its spin.
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Geometrically, the correlation functions of such fields are sections of the s power of the sphere
subbundle in the cotangent bundle 7>} .

Let us collect the relations obtained in this section for low point insertions in the correlation
functions. Since all the considerations were local, the same equalities hold in correlation functions
with other insertions as long as their points stay away from the insertions taken together. Adding
also the relations involving the complex conjugate components of energy-momentum tensor and

introducing simplified notation T'=T,., T'= T, we obtain:

i/. identities

;T =0=0,T, (27)
ii/. operator product expansions
c/?2 2 1
T(z)T(w) = =) + =) T(w) E— O T'(w) + ,
e c/?2 2 — 1 .
T(z)T(w) = =) + (2_w)2T(w)—|—2_ — 0z T'(w) + ,
T(2)T(w) = —%82855(2)(2—10) TR (28)

iii/. transformation laws

() (') = T(2)(de)? = 5 {52} (d=)" (31)
() (') = T(2)(d2)* — ST (d2)” (32)

A

o', 7V (d) (dF) = (=, 7) (d2) > (d2)™ (33)

3. Physical positivity and Hilbert space picture

Up to now we have analyzed abstract conformal fields in the Euclidean formalism, probabilistic
in its nature and distinct from the traditional operator approach. The operator formalism of
QFT fits into the general quantum mechanical scheme with the

(i) Hilbert space of states,

(i1) representation of the symmetry group or algebra,
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(iii) distinguished family of operators

as 1ts basic triad. This is a fundamental fact of QFT that the passage between the Euclidean and
the operator formalisms, which we have discussed already for free fields, may be done in quite
general circumstances. This fact is responsible for the deep relation between critical phenomena
and quantum fields and it has strongly marked the developments of QFT. CFT, which is not an
exception in this respect, has largely profited from the unity of two approaches. In the present
section we shall discuss how the operator picture may be recovered from the Euclidean formulation
of CFT presented above assuming the physical (or Osterwalder-Schrader) positivity formulated
as a condition on correlation functions on the Riemann sphere CP'. Analysis of the genus zero
situation will allow to recover the Hilbert space of states and to translate the operator product
expansions of the last section into an action of the Lie algebra of conformal symmetries and of
the primary field operators in the space of states. Later we shall describe the operator formalism
on higher genus Riemann surfaces which permits to relate naturally CFT in different space-time
topologies.

Let us consider the map o : CP* — CP',| J(z) = z7'. ¥ interchanges the disc D = {|z| <

1} with D' ={|z| > 1} and leaves invariant ‘their common boundary {|z| =1}. Suppose that
we are given a Riemannian metric 4 on D, compatible with the complex structure, which is of
the form |z|72|dz|* around 9D (we shall call such a metric flat at boundary). ¥*y is a metric

on D' and it glues smoothly with v on D to the metric ¥*y V~ on CP'. Consider formal
expressions

X = [ éu(zi 2) (34)
for distinct points z; in the interior of D (with the empty product case included). Denote
Od(z,2) = (=27 (== gr(, 1) (35)
where [+ [ is the same involution that appeared in eq. (7). For X as above, we set

The physical positivity requires that for each family (A,) of complex numbers, each family (X,)
of expressions (34) and each family (v,) of metrics on D flat at boundary

5 Ao Zimsginny {(OX0) Koo 2 0 (37)

al, Q2

These properties hold for the free field compactifications. The condition (37) may be rewritten
using correlation functions with energy-momentum insertions and a fixed metric. Set

OT(z) = z7'T(2), (38)

and extend the definition (34) to expressions

Y = [ 7(zn) [TT(z0) [T (20 2) (39)
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(with all points in the interior of D and distinct) for which

QY = H OT (zn, H @T H O, (zi, Zi) - (40)

One may infer from the property (37) that

D Aasday ((OYe,) Yo ) > 0 (41)

al, Q2

where ( ---) denotes the correlation functions in a locally flat metric.
Problem 2. Show that (37) implies (41).

The construction of the Hilbert space H of states is now simple. The expression
!
5 (1))

defines a hermitian form on the space Vp of formal linear combinations of products (39). Due
o (41), this form is positive and becomes positive definite on the quotient by its null subspace
Vaull - One sets

H = Vp/Vaul. (42)

We shall denote by ¢ the canonical map from Vp to H, by Hy its image C H and by Y the
image ¢(Y') of Y. The empty product in (39) gives rise to the “vacuum vector” Q. The scalar
product is given by

(V' Y) = ((8Y)Y).

H carries an anti-unitary involution Z mapping vector Y to ) where ) corresponds to

Y = [[70) [17(20) 1;[@3(% Zi) - (43)

4. Virasoro algebra and its primary fields

Define the action of dilations by ¢ € C, 0 < |g| < 1, on the fields by setting

S, T(2) = ¢*T(qz), S,T(2) = @T(q2), S,i(2,2) = 4" ¢ di(qz,GZ).

For Y given by (39), we put
S Y = H S T Zm H n) H Squli(zl, 51) .
m n l
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Problem 3. Using the conformal symmetries of the correlation functions, verify that

((OY)5,Y) = ((0.5Y)Y) . (44)

In the Hilbert space, we may define the dilation operator S, by the equality
S, Y = (S, Y).

Note that eq. (44) implies that S, is well defined on the dense invariant domain Hy. In fact, the
family of operators (S,) forms a semigroup: S,,S,, = Sy14,- Applying many times the Schwartz

inequality, identity (44) and the semigroup property of S,, one obtains following Osterwalder-
Schrader:

[V S < ISP = V(Y. S d)'?
< < IVIIVIET 5 (9, 8 s D) (45)
Assume now that for each € > 0, there exists a constant C s.t.
(©Y)8,Y)] < C.t (46)

when ¢ — 0. What it means is that when the distances of a group of insertions are uniformly
shrunk to zero the singularity of the correlation functions is not stronger then the power law
given by the overall scaling dimension of the group. Using bound (46) on the right hand side of
(45) and taking n to infinity, we infer that

(V5 8 < VYIS

i.e. that the dilation semigroup S, is composed of contractions of H. Eq. (44) implies now that
S; = S;. The weak continuity of the semigroup (S,) on H follows from that on H, which is
evident. By the abstract semigroup theory

Sq = qLO qio (47)

for strongly commuting self-adjoint operators Lo and Lo s.t. Lo+ Lo > 0. Clearly, Hy is
inside the domain of Ly and of Ly and

Loy = aQ|q=1 qu 9 fjoy = a(j|q=1 qu ° (48)
It also follows that S, Hg is dense in H for all g.

Lo, Lo are only the tip of an operator iceberg. To see more of it, define operators T (z),
T(2) and ¢(z,z), with S.Hy as the (dense) domain (|z]| < 1), by setting

T()Y =uT(=)Y), TEY=uTE)Y), @z2)Y=a(z2)Y).

It is easy to see that the operators T (z), 7(2) and ¢(z,z) are well defined. Note that for Y
given by eq. (39) and with the absolute values of all insertion points different,

y = i (TG T T (o2 0 (19
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where R(---) reorders the operators so that they act in the order of increasing |z|. This is the
reason why the operator scheme described here is often called radial quantization. Under the
conjugation by the anti-unitary involution Z of H,

Toi(2,2)T = pi(2,2), IT(2)T =T(2), IT(Z)I ="T(z). (50)

It will be useful to introduce Fourier components of the operators T (z) and T (%):

1 n
L = 57¢ 2 T (2)dz (51)
|z|=r<1
z 1 A
|z|=r<1
Since the insertion of T'(z) in the correlation functions (---) is analytic in z as long as the

other insertions are not met, the matrix elements ()’, L, ) (and hence the vector L,} itself)
does not depend on r as long as r < 1 and the contour |z| = r surrounds the insertions of Y

(similarly for L, ). Notice that

(V. L.Y) = o 3 2 (OY)T(2) Y Vdz
z|=1—¢
- L |Z|:1+5n—3<(®(Y'T(§)) V) dz (53)
where we have moved the integration contour slightly, representing 7'(z) with |z| = 1 + € as

z*OT(L). The right hand side is equal to

(o b YY)

2m z|:1—|—e z

:(Lj{ w T T(w)dw ), V) = (L, Y, V).
ful=(1+¢)

27 —1
It follows, that operators L, (and f/n) are closable® and their adjoints satisfy

n

Ly=~L.,, L=1_. (54)

L,’s and L,’s commute with the anti-involution Z of H. It will be convenient to somewhat
extend the domain of definition of the operators introduced above. Let us admit in expressions

Y of (39) integrated insertions §,_, 21T (2)dz and similarly for T(2). Denote by H; the

resulting subspace of H. Of course H; contains Hy and is invariant under L,’s and Zn’s.

Operators T(z), T(z) and ¢(z,2z) may be clearly extended to S.H; and we shall assume
below that this has been done?.

The calculation which we shall do now is an example of an argument which translates (certain)
OPE’s into commutation relations and is used in CFT again and again. A devoted student should

3we keep the same symbols for their closures
et us remark that these operators are not closable so their domains should be handled with special care
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memorize its idea once for all. We start with the OPE (28) for T'(z) which will give commutation
relations between L, ’s. Let us consider the matrix element

(V' Ly T(w)] V) (55)
= (e ) O TG T Y 5
= = L TEdeY) (o + = T(w) + 0 T(w)) Y) (57)

where we have used the fact (49) that the order of operators is determined by the radial order of
insertions in the correlation function. In the last line we have collapsed the contour of integration
to a small circle around w and inserted the OPE (28). Expanding 2"*! around z = w

n nd—n "— n24n n—
= ((z—w) ) = (e — ) et (2= w) e
+(n+1)(z—w)w" + w4
and retaining only the terms which contribute to the residue at z = w in the last integral of eq.

(57), we obtain
(V' [, T(w)] V) = ((OY") {35 (0 = n)w™™ + 2(n + 1 w" T'(w)

+ "t O T(w)}Y)
which is the weak form of relations
(L, T(w)] = 5 (0° = n)w" ™ + 2(n + D)w" T(w) + w9, T (w) . (58)
Similarly, the OPE (28) implies that
[Ln, T(0)] = S (n® —n) "% + 2(n + 1)w" T(w) + w" 95T (w) . (59)

By virtue of eq. (28), the mixed commutators [L,, 7 (w)] and [L,, 7 (w)] vanish.

Performing a contour integral over w on both sides of eq. (58) multiplied by z™*!  we obtain
the commutation relations

[an Lm] = (n - m) Ln-l-m + %(nS - n) 5n+m70 : (60)

The (infinite-dimensional) Lie algebra with generators L, and a central element C (called the
central charge) and with relations (60), where ¢ is replaced replaced by C, is known as the
Virasoro algebra. We shall denote it by Vir. It is closely related to the (Witt) Lie algebra
of polynomial vector fields Vect(S!') on the circle {|z| = 1} with generators [, = —2""'9, and
relations

Loy lm] = (0 —m) Ly -

More exactly, Vir is a central extension of Vect(S'), i.e. we have an exact sequence of Lie
algebras

0 — C — Vir — Vect(S') — 0,
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where the second arrow sends 1 to C and the third one maps L, to [,.

Eq. (59) gives rise to another set of Virasoro commutation relations
[va Zm] = (n - m) Zn-l-m + %(nS - n) 5n+m70 : (61)

L,’s and L,,’s commute. Both (60) and (61) hold on the invariant dense domain H; € H, As we
see, the Hilbert space of states H of a CFT carries a densely defined unitary (i.e. with property
(54)) representation of the algebra Vir & Vir with central charges acting as the multiplication

by e.

The representation theory of the Virasoro algebra has played an important role in the con-
struction of models of CFT. We shall include for completeness a brief sketch of its elements in
the next section. But why did the Virasoro algebra appear in CFT in the first place? As we
have mentioned, Vir is the central extension of an algebra of vector fields on the circle. But
Vect(S1)®Vect(S') may be identified with the Lie algebra of (polynomial) conformal vector fields
on the two-dimensional cylinder {(¢,z) | x mod 27 } with the Minkowski metric vpr = dt* —dz?.
By definition, the conformal vector fields X satisfy Lxym = fxvyam for some function fx, where
Lx denotes the Lie derivative w.r.t. X . The identification assigns to generators [, and [, the
conformal vector fields —z"t1d, and —z"*'0;, respectively, with z = e!t+2) and z = §i(t_l’).
In particular, i(lo 4 lo) is the infinitesimal shift of the Minkowski time ¢ and i(ly — ly) the
infinitesimal shift of . Hence Vect(S') & Vect(S!) is the Lie algebra of Minkowskian confor-
mal symmetries and representations of Vir ¢ Vir describe its projective actions realizing such
conformal symmetries on the quantum-mechanical level (projective representations correspond

to genuine actions of symmetries on the rays in the Hilberts space representing (pure) quantum

states). H = Lo+ Lo is the quantum Hamiltonian® and P = Ly — Lo is the quantum momentum
operator. The unitarity conditions (54) correspond to the natural real form of the algebra com-
posed of real vector fields: such vector fields are represented by skew-adjoint operators so that
the corresponding global conformal transformations act by unitary operators. Vect(S!) may be
viewed as the Lie algebra of the group Diff,(S') of orientation preserving diffeomorphisms of
the circle. Let Diff,(S') denote the group of diffeomorphisms of the line commuting with the
shifts by 2.

0 — Z — Diff (SY) — Diff, (SY) — 0.
The group D = (D?]?f_l_(Sl) X Dﬁf+(51))/zdiag (which acts on the light-cone variables z* =

t + = is the group of conformal, orientation and time-arrow preserving diffeomorphism of the
Minkowski cylinder. Vir ¢ Viraction in ‘H integrates to the projective unitary representation

of D.

We shall need more information about the representations of Vir x Vir which appear in
CFT. This may be obtained by studying the behavior of the primary field operators with respect
to the Virasoro algebra action.

Problem 4. (a). Show by employing the contour integral technique that

[Ln, pr(w, w)] = Ar(n+1) w" gi(w, w) + w" Dy pi(w, @) (62)
(L, oi(w,w)] = Aj(n+ 1) 0" ¢i(w, w) + 0" g (w, w) . (63)

Slater, we shall see that it is more natural to shift # by a constant
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(b). Using the above relations and egs. (58) and (59) prove that the operators Lo, Lo given by
(51) and (52) coincide with the generators of the semigroup (S,) introduced earlier.

Eqgs. (62) and (63) express on the operator level the properties of the (Virasoro) primary fields
of conformal weights (A, Al) Comparing them to the last two equations of Lecture 1, we infer
that operators ¢;(w,w) for (w,w) = (e~ e~="¢) should be interpreted as the imaginary time
versions of Minkowski fields. Note that the components T(z) and T(z) fail to be Virasoro
primary fields of weights (2,0) and (0,2), respectively, due to the anomalous term proportional
to ¢ in the relations (58) and (59).

Recall, that (as a generator of a self-adjoint semigroup of contractions) the self-adjoint opera-

tor H = Lo+ Lo has to be positive. In Minkowskian QFT with Poincare invariance the positivity
of the Hamiltonian implies the spectral condition H + P > 0 where P is the momentum op-
erator. The same is true in CF'T with its Hilbert space corresponding to cylindrical Minkowski
space. The Virasoro commutation relations imply,

Lo >0, Lo >0. (64)

Indeed. Let Ep be a non-vanishing joint spectral projector of Ly and Lo corresponding to
eigenvalues in a small ball B, with the Lo eigenvalues negative and such that Fp_ 0 = 0.

Then, for any normalized vector ¢ with Egt — 1, we have
Lith = Ly Egtp = Ep_10) L) = 0 .
On the other hand,
0< (Lo, Lap) = (¥, LiLp) = (¢, [Ly, Loy ]¥0) = 2(4, Low) <0

which shows that Ly cannot have negative spectrum. Similarly for Lo. Hence only positive
energy representations of the Virasoro algebra with Ly > 0 (Lo > 0) appear in CFT with
the Hilbert space interpretation. The techniques of CFT apply, however, also to certain scaling
limits of statistical mechanical models without physical positivity where a wider class of Virasoro
representations intervenes.

Relations (62) and (63) provide further spectral information about Ly and Ly. They imply
the equalities

L,Q2=0, n>-1 L,Q=0, n>-1 (65)
Loo(0)Q =0, n>0, Logi(0)Q =0, n>0, (66)
LOQQI(O)Q = AH@[(O)Q 5 LOQQI(O)Q = AH@[(O)Q

where, by definition, ;(0)Q = lir% ©i(z,2) Q. In particular, it follows that the vacuum vector
zZ—r

Q is an eigenvector of Lo and Lo with the lowest possible eigenvalues 0. We shall assume that it
is a unique vector, up to normalization, with this property (although there are CFTs without this

Eroperty). In fact, Q is annihilated by the sl; x sl Lie subalgebra generated by Lo, Li1, Lo and

Li; but not by the entire symmetry algebra Vir x Vir of the theory: the conformal symmetry
is spontaneously broken.
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©1(0) 2 are also eigenvectors of Loy and Lo, with eigenvalues (A, Al) and it follows that
Ay, A >0. Also ITQ = Q and Zp(0)Q = ¢7(0)Q. In fact, vectors ¢;(0) Q are annihilated

by all Virasoro generators with positive indices. The eigenvectors of Ly, Lo (and C) with such
property are called Virasoro highest weight (HW) vectors.

Summarizing, we have shown that the Hilbert space of states in a CFT carries a (densely
defined) positive energy representation of two commuting copies of the Virasoro algebra with the
same central charge ¢. The primary field operators ¢;(z,2) applied to the vacuum become in
the limit z — 0 HW vectors of the Virasoro representations.

5. Highest weight representations of Vir

For completeness, we include a brief sketch of representation theory of the Virasoro algebra.
An important class of representations of the Virasoro algebra is Constituted by the so called
highest weight (HW) representations. Let § = CLy & CC, Ny = @ CL,, N_= @ ClL_,.

Vir = N_ @ 0 & Ny is the triangular decomposition of the Virasoro algebra Let A\ € (9* the
dual space to 0, A(C) = ¢, AM(Lo) = A. A Vir-module (representation) M. is called a HW
module of HW )\ if there eXists a vector vg € V such that

N_|_U0 = 0,
Z/{(N_)Uo = A
v = Mx)vy for x€0

where U(-) denotes the enveloping algebra. v is called the HW vector, ¢ the central charge and
A the conformal weight of the HW representation. It follows that M, A is the linear span of the
vectors L, L_, _ -+ L_nlvo with 0 < ny <ng <...<n,,but these vectors are not necessarily

linearly independent. N = Z n; is called the level of the vector L_, L_, - - L_, vo. A level

N vector is an eigenvector of Lo with eigenvalue N + A. We shall denote the subspace of the

level N vectors by M c(,]X)' Clearly vectors of different levels are linearly independent, thus we
have

Mc,A — @ M(N)
N=1

with the dimMc(fX)g p(N), the partition number of N. A HW module with dlm(M(]X)) = p(N)

for all V, i.e. where all the vectors of the form L_, L_, _ - - L_, vo (with ordered n;’s) are
linearly independent is called the Verma module V, . It exists for all complex ¢, A and is
unique up to isomorphisms. In the analysis of the HW modules of the Virasoro algebra an
important role is played by singular vectors. A non-zero vector vV) of level N is called
singular, if angN) =0 for all n > 0. Any vector v, with L,v;, =0 for all n > 0 is a a sum of

singular vectors (its non-zero homogeneous components). Any singular vector vgN) generates a
submodule in V. o isomorphic to V. a;n. We have:

(i) Any submodule of V. A is generated by its singular vectors.
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(ii) Any HW module M. a is isomorphic to a quotient of the Verma module V, .

(iii) The factor module of the Verma module by the maximal proper submodule is the unique
(up to isomorphisms) irreducible HW module H. A .

A Vir-module M is called unitary, if there exists a (positive, hermitian) scalar product (-, -)
on M s.t.

(v, Lyw) = (L_p,v,w) for alln € Z and for all v,w e V . (67)

It follows then that (v,Cw) = (Cv,w) for all v,w € V and that the eigenvalues of C and
Ly are real. On each Verma module V.o with ¢ and A real there exists a unique hermitian

(Shapovalov) form (-, ) s.t. (v, Lyw) =(L_,v,w) for all v,w € V.o and that (vg,ve) = 1.
Define Null.ao = {v € V.a|(v,w) =0 forall we V.a}.

(i) (@M oW =0 if o™ (v ) is alevel N (N') vector and N # N',
(ii) any singular vector of positive level belongs to Null. a .

(iii) Null.a is the maximal proper submodule of V. A, i.e. Hoa = Voa/Null.a

Let us investigate the conditions under which H, A is a unitary Vir-module, or, equivalently,
under which the hermitian form on H.a induced by the Shapovalov form is positive. Since
(L_pvo, L_pvo) = 2nA + %(n3 —n), necessarily ¢ > 0 and A > 0. Now consider the two 2n
level vectors v = L ?vg and w = L_s,vg and suppose that ¢ = 0. The Gram determinant

det ( (v,0) (v,w) ) — 20n*A? 1 320°A7

(w,v) (w,w)

Thus for ¢ = 0 a necessary (and sufficient) condition is A = 0. ¢, A = 0 correspond to the trivial
one-dimensional representations. So there exists no non-trivial unitary HW representation of the
Lie algebra Vect(S') of the (polynomial) vector fields on the circle. It is enough to study the

positivity of the Shapovalov form restricted the the subspaces HC(fX) of the given level. Let mgVA)

denote the p(N) x p(N) matrix with the entries (L_,, L, _, -+ L_pvo, Lopr Ly -+ L_p1v0)

where (n;) and (n!) are ordered and Y n, = > n. = N. Unitarity of H.a is equivalent to the
(N)

conditions mcﬁ >0 for all N. In particular, det(mg\g) has to be non-negative for all N when
H. A is unitary. Direct calculation for level 1 and 2 gives

m{)) = 24,
det(mf&) = 4A (%c +(c—H5)A+ 8A2) )
(N)

A general formula for the determinant of m_ » was given by Kac and was proven by Feigin and

TFruchs:



where A, (m) = M, m is a root of the equation ¢ = 1 — and Ky =

__6
4m(m+1) m(m+1)

I1 ((QT)SS!)n(T’S) with n(r,s) denoting the number of partitions of N in which r appears s

1<rs<N
r,s€EN

times.

(N)

For A — oo, m_ A goes to a diagonal matrix with positive entries. From the Kac formula

it follows that det(mg\g) >0 for ¢>1, A > 0. Therefore mgVA) is non degenerate and positive
for ¢ > 1, A > 0 and non-negative for ¢ > 1, A > 0. Thus V. A isirreduciblefor ¢ > 1, A >0
and H.a is unitary for ¢ > 1, A > 0. Since, for ¢ =1

N-—rs
ot ™ A_(T_S)z p( )
clm{) = ey T (a-CL)T

1<rs<N

it follows that Vi A is irreducible if and only if A # 2 e,

4

For 0 < ¢ < 1, the situation is more interesting providing the first example of the selective
power of conformal invariance.

Theorem. For (¢, A) with 0 < ¢ < 1 and A > 0, unitarity of the irreducible HW representation
H. A requires that (¢, A) belong to the following discrete series of points:

c = 1-—"= m=23,...
m+1 i—:s)2—1 } Lsw 7§ m— 1 ’
Avalm) = Gommgit [ 12020

The theorem was proven by Friedan-Qiu-Shenker by a careful analysis of the geometry of lines
(¢(m), A,s(m)) in the (¢, A) plane. This, in conjunction with the Kac determinant formula,
allowed subsequent elimination of portions of the (¢, A) plane were negative norm vectors appear,
by an induction on N. At the end, only the points listed above were left. Goddard-Kent-Olive
constructed explicitly unitary irreducible HW representations of the Virasoro algebra for the
above series of (¢, A) employing the so called ”coset construction”.

All unitary HW representations integrate to projective unitary representations of Dif f1 (S5*)
in the Hilbert space completion of H, A .

All unitary representations M of the Virasoro algebra s.t. (the closure of) Ly is a positive
self-adjoint operator with a discrete spectrum of finite multiplicity in the Hilbert space completion
M of M is essentially isomorphic to a direct sum of unitary representations (the isomorphism
may require a different choice of the common invariant dense domain for L,’s in M ). We shall
see in the next section that in CFT the operators S, = ¢%° g should be trace class for |¢| < 1

from which it follows that Lo and Lo have a discrete spectrum of finite multiplicity. Hence
the Virasoro algebra representations which appear in CFT are direct sums of the unitary HW
representations.

The algebra Vect(S') @ Vect(S'), and hence also Vir& Vir acts naturally on the space A2A
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of (A, A)-forms f(dz)2(dz)® on D\ {0} by Lie derivatives:
Inf = —-An+1)2"f — 2" a.f, If = -An+1)z"f — 2" 0. f.

The commutation relations (62) and (63) express the fact that the operators ¢; intertwine the

action of Vir@Vir in H; C H and H; @ A2A1. This gives a representation theory interpretation
of the primary fields of CFT.

6. Segal’s axioms and vertex operator algebras

Up to now we have studied QFT on closed Riemann surfaces. Let us consider now a compact
Riemann surface ¥ (connected or disconnected) with the boundary composed of the connected
components C;, ¢ € I. We shall parametrize each C; in a real analytic way by the standard
unit circle S* € C. Components C; may be divided into “in” and “out” ones, depending on
whether the parametrization disagrees or agrees with the orientation of C; inherited from X.
This induces the splitting I = [, U I,y of the set of indices 1. We may invert the orientation
of C; by composing its parametrization with the map z — 271 of S'. To ¥ with parametrized
boundary, we may uniquely assign a compact surface ¥ without boundary by gluing a copy
of disc D to each boundary component C; with ¢ € [, and a copy of disc D’ to each C;
with 7 € [,. Conversely, given a closed Riemann surface Y with holomorphically embedded
disjoint discs D and D’ (“local parameters”), by removing their interiors we obtain the surface
Y with boundary parametrized by the standard circles {|z] = 1}. We shall call a metric h
on ¥ (compatible with its complex structure) flat at boundary if, for each i, it is of the form
|2|72|dz|* in the local holomorphic coordinate around C; extending its parametrization. We shall
consider only such metrics on surfaces with boundary.

First, let us note that a metric ¥ on ¥ and metrics 4; on D, all flat at boundary, give rise
by gluing to the metric

:)/ = (\/'Lelmﬂyl) \/ 7 \/ (vleloutﬂ*ﬂyl)

on Y. It follows from the local scale covariance formula (4) that the combination of partition
functions

Z5 H(Zﬁ*%‘\/%‘)_l/z = Z, (68)

€]
is independent of (the conformal factors) of +;. Besides, the transformation of Z, under v — ey
with o vanishing around the boundary is still given by eq. (4). It is sensible to call Z, the

partition function of the Riemann surface ¥ with boundary. Let ); € Hy. Consider the matrix
elements defined by

(@ierndis Ay, Qier, Yi) = Z,( T (OY) J[ V7). (69)

1€ lout ie[in

We shall postulate that the above formula defines operator “amplitudes” Ay, , mapping the tensor
products of the CF'T Hilbert spaces associated to the boundary components of . In particular,
for ¥ without boundary, eq. (69) should be read as the identity Ay, = Z,. Amplitudes Ag
(or rather their holomorphic counterparts) were considered as the defining data of CFT in the
work of Segal. Let us state the Segal axioms (adapted to the real setup).
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(i) We are given the Hilbert space of states H with an anti-unitary involution Z and for each
compact Riemann surface (with parametrized boundary or without boundary, connected
or disconnected) the operator®

QH — QH. (10)
1€ fin 1€ Lout

which we assume trace class.

(i1) If ¥ is a disjoint union of ¥; and ¥, then
A

Zy

= Azm ® A

Toy T

(i) If D : ¥y — ¥y is a diffeomorphism reducing to identity around the (parametrized) bound-
ary then

A = A

bl $1,D*y

(iv) If ¥ denotes the Riemann surface with conjugate complex structure (and opposite orien-
tation) then

A, = Al

vy vy

(v) The inversion of boundary parametrization acts on the amplitude A, by the isomorphism
‘H = H* induced by Z in the corresponding Hilbert space factor.

(vi) If ¥’ is obtained from ¥ by gluing of the C;, and C;, boundary components then
A = trio’il A

By RV
where tr;, ;, denotes the partial trace in the H factors corresponding to C;, and C;, .

(vii) For any function ¢ on ¥ vanishing around the boundary

5l [ o dv)
A e Joordn 4

ey

In the approach in which we start from the data speafymg partition functions and correlation
functions on surfaces without boundaries, property (i), in conjunction with eq. (69), imposes
certain new regularity conditions on the Correlatlon functions. Property (ii) may be viewed as
a definition of the amplitudes for disconnected surfaces. All the remaining properties except
for (vi) follow easily. The gluing axiom brings an essential novel element allowing to compare
the correlation functions of different surfaces (with different complex structures and different
topologies). In the heuristic approach employing functional integrals, it expresses locality of the
latter. Let us explain this point in more detail.

5the empty tensor product should be interpreted as C
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We shall think about the partition function of a QFT on a closed Riemann surface as being
given by a functional integral of the type

7z, = /e—52<¢> Do (71)

where Sy,(¢) is the action functional and D¢ = [[.ex dv(p(x)) is the formal volume element on
the space of fields. On a Riemann surface with boundary ¥, we could consider an analogous
functional integral with fixed boundary values ¢|c, = ; of the fields:

Ap ((pi)ier) = /G_SE(¢) D¢ . (72)

¢|Ci:(ﬂi

It is a function of the field boundary values. The space of functionals F(p) of the fields on the
circle with the formal L? scalar product may be thought of as the Hilbert space H of states of
the system (we have seen a concrete realization of this idea for the free compactified field). We
may then interpret the functional A;_((¥s)icr) as the kernel of an operator mapping the tensor

product of state spaces, one for each “in” component of the boundary, to the similar product for
the “out” components.

The space H may be equipped with a formally anti-unitary involution Z, (ZF)(¢) = F(¢V)
where ¢Y(z) = ¢(27') which allows to turn the operators in H into bilinear forms and vice

versa and to identify the operator amplitudes when we invert the orientation of some boundary
components.

The basic formal property of the functional integral (72) is that one should be able to compute
it iteratively. Suppose that the surface ¥’ is obtained by identifying a (parametrized) “out”
component C;; with an “in” component C;, of a (connected or disconnected) surface ¥. The

functional integral on ¥’ may be done by keeping first the value of the field on the gluing circle
fixed and integrating over it only subsequently. In other words, the equality

/ e~ 5x/(#) D¢ = /( / e~ S(4) ng) Dy

Sle, =wi dle, =vir #0011
i#ig,iq Wcm=¢o=¢b“

should hold and this is exactly a formal version of the gluing property (vi).

What is the functional integral interpretation of eq. (69)7 One should interpret vectors J € H
as corresponding to functions

fY(SO) = (Zﬁ*'y\/’y)_l/z / Ye_SD((b) qu

dlop=¢

of fields on the circle. The complex conjugate functions are then given by the D’-functional
integrals

(Zgemney) ™12 / OY =50 Do

dlop=e
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so that the formal L? scalar product for the functions of fields ¢ on the boundary circle gives

/]—"y(c,o) Fy(p) Do = (Zﬁww)_l/((ﬂY) Y e=Spup(®) D
= ((0Y)Y) = (), D)

(v has been assumed locally flat above). Formula (69) follows now by iterative calculation of the
functional integral

Z( [ ev) I vi) = [ T (@Y IT v @ Do

1€1out 1€ fin 1€1out 1€l
by first fixing the values of ¢ on 9% and then integrating over them.

Any two-dimensional QFT should give rise to operator amplitudes with properties (i) to (vi).
In particular, the so called P(¢)s theories corresponding to the actions S(¢) ~ [|¢||7.+ [ P(¢)dv,
where P is a bounded below polynomial, give undoubtly rise to such structures. The special
property, which distinguishes the CFT models from other two-dimensional QFT’s is, of course,
the local scale covariance (vii) (conjecturally, special limits of the P(¢)s theories should possess
this property).

As already stressed, if we consider eq. (69) as the definition of the amplitudes Ay, then the
properties (1) to (vii) above become further requirements on the correlation functions. The point
of Segal was, however, that the amplitudes Ay, satisfying (i) to (vii) may be taken as the defining
objects of CF'T from which the rest of the structure, like the Virasoro algebra action, the primary
fields and their correlation functions, etc. may be extracted. In this sense, the requirements (i)
to (vil) may be viewed as the basic axioms of CFT, encapsulating its mathematical structure.
Let us briefly sketch Segal’s arguments. They require looking at the amplitudes Ay ., for the
simplest geometries.

Discs

For ¥ =D, Ap., € H and (quww)_lﬂ Ap~ 1s a metric independent vector which, according
to eq. (69) we should interpret as the vacuum vector:

(Zgenn)* A, = Q. (73)

Similarly, A is the linear functional on H,

Dl,’ﬁ*ﬂ/
(Zowy) P AL, o= (0, )

It follows from the properties (iv) and (v) that Q@ = Z.

Annuli

Let us pass to surfaces ¥ with annular topology. Under gluing of an “out” and an “in”
boundary components of two such surfaces their amplitudes Ay, form a semigroup due to the

property (vi). This is the semigroup which encodes the Virasoro action on H. In particular,
for the annuli ¥ = {|q| < |z| < 1} = €, with the “out” boundary parametrized by z — z and
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the “in” one by z — gz, using the metric o = |2|72|dz|* on C,, we obtain a semigroup almost
identical to the semigroup (S,) considered before

(ylvA y) :ZW0<(®Y)SqY> = Zy, (y’,qu) (74)

Cg,v0

where 7., is given by eq. (68).
Problem 5. Show that 7, = (qq)~¢/**.

The immediate consequence of this relation and of eqs. (74) and (47) is the identity

Lo—c/24 ~Lo—c/24

cyny = G G (75)
Note that the mapping z +— e establishes a holomorphic diffeomorphism between the finite
cylinder C; = {2 |0<Imz <2717, }/27rZ and C, where ¢ = e*™". The pullback of the metric
Yo by z = e is |dz[*. The amplitude A_ a2 is equal to e 2™ H 2N P where 7 = 7 417y
and H is the Hamiltonian of the theory quantized in periodic volume R/27Z and P is the
momentum operator. Comparison with eq. (75) yields

H:LO—FZO—%, P:Lo—zo.

The requirement that the amplitudes be trace class operators implies that Lo and Lo have dis-
crete spectrum with finite multiplicity, so that their eigenvalue zero corresponding to eigenvector
Q) is isolated (with possible multiplicity). Note, that energy of the vacuum state becomes equal

c 2

to 5 now. If we work on the space R/LZ instead, the energy spectrum is multiplied by =*

so that the lowest energy becomes 7. This permits to calculate (following Cardy) the central

charge of the conformal models from the finite size dependence of the ground state energy in the
periodic interval.

Gluing together the boundaries of €, one obtains the elliptic curve T, = C/(Z + 7Z)
(with metric 472|dz|*). The properties (iii) and (vi) of the operator amplitudes imply then the
following expression for the toroidal partition function

Z(r)y = A = t{r qLO_C/24 QEO_C/M ) (76)

T‘r7|0l2|2

which is necessarily a modular invariant function (recall why?). The modular invariance of the
partition functions of CFT has played an important role in the search and the classification of
models.

The amplitudes for other annular surfaces allow to obtain the action of other generators of the
double Virasoro algebra in the Hilbert space of states H. If D 3 z — f(z) € D is a holomorphic
embedding of D into its interior preserving the origin then ¥; := D\ f(int(D)) is in a natural
way an annulus with parametrized boundary (one “in” f(dD) and one “out” dD component).
Such annuli form a semigroup. In particular, for f, ,.(z) =+ ¢*% e % for n > 0, lg| < 1
and |a| sufficiently small,

A — Z eOan LO e@Ln *LO
S fgam i 9 9
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encoding the action of the operators L, , L, for n > 0 (the complex-conjugate annuli Xy,

give amplitudes encoding L, , f/n for n < 0). The Virasoro HW vectors &} € H of conformal

weights (A7, A;) may be characterized by the equalities

27 A A= (A (R (77)

dz dz

In particular, LoX; = A&, L, X =0 for n > 0 and similarly for L,’s.

Each Virasoro HW vector gives rise to a primary field and the correlation functions of the
primary fields may be recovered from the operator amplitudes by the following construction. Let
(21, ...,2,) be a sequence of non-coincident points in the surface ¥ without boundary. Specify
local parameters at points x; by embedding discs D into X so that their images centered at

points x; do not intersect. ¥ may be then viewed as a surface ¥ with boundary capped with
discs D. The correlation functions of the primary fields ¢;, corresponding to the HW vectors
A1, may be defined in a locally flat metric by the formula

(Sn(a1) - dilen)) = 7 Ay, @i, (78)

(in accordance with relation (69)). The characteristic property (77) of the HW vectors assures
that the left hand side is unambiguously defined as a A;;, A; -form in variable z;:

Problem 6. Using relation (77) and the gluing axiom show that the right hand side of eq. (78)
picks only a factor (%}l)Alﬂ (%l)Alﬂ under the change z — f(z) of the ;' local parameter of

surface Y.

As we see, the relation between the primary fields and the HW vectors ¢; — ¢;(0)§, discovered
before is one to one (if we include among the primary fields the trivial “identity” field whose
insertions have no effect in correlation functions and which corresponds to the HW vector ).

Pants

More generally, it is possible to associate to each vector X" in the Hilbert space of states H,
in the domain of ¢, =10 ¢~ for some ¢; with |¢1| < 1, an operator-valued field ¢(X';w,w)
defined for 0 < |w| < 1 in the following way. For 0 < |¢| < |w| — |@1| < 1 — 2|q1], consider the

Riemann surface

Prgrw = {lal <zl <1, [z —w| = ] }

with the “out” boundary component {|z| = 1} parametrized by z — z and the “in” ones by
z +— qz and by z — w + ¢1z. Such a surface is often called “pants” for obvious reasons. The
operator ¢(X';w,w) will be essentially defined as the amplitude of the pants. More exactly, we
shall put

p(Xiw,w)Y = o (g Yo aggx).

oy Pq,q1,w,Y

Note that @(X;w,w))Y is independent of ¢ and of ¢ as long as A’ is in the domain of

(h_LO ql —Lg and y in the domain of q_LO Q_LO .
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Problem 7. (a). Show that ¢(X;0)Q = lin% e(X;w,w)Q = X.
w—r

(b). Show that for a HW vector X}, ¢(A); w,w) coincides with the operator ¢;(w,w) assigned
to the primary field ¢; corresponding to Aj. ) B

(c). Show that @(L_2Q;w,w) = T(w) and that ¢(L_2Q;w,w) = T (w).

The operators ¢ (X; w,w) satisfy an important identity
p(V;2,2) p(X;w,0) = o(p(V;z—w, 2 —w) X5 w,w) (79)

holding for 0 < |w| < |z], 0 < |z —w| < 1. Eq.(79) follows from the two ways that one may
obtain the disc with three holes by gluing two discs with two holes.

Problem 8. Prove eq. (79) using the gluing property (vi) of the operator amplitudes and treating
with care the normalizing factors Z .

The relation (79) may be viewed as a global form of the OPE’s, the local forms following from it
by expanding the vector ¢(Y;z —w, z —w) X into terms homogeneous in z —w and z — w.

Since any Riemann surface can be built from discs, annuli and pants the general amplitudes
Ay, may be expressed by the Virasoro generators and operators ¢(X;w,w). This permits
to formulate the basic mathematical structure of CFT in an even more economic (and more
algebraic) way than through the amplitudes Ay ), with the properties (i) to (vii), getting rid
of the Riemann surface burden. Instead, one obtains a set of axioms for the action of the
Vir x Vir algebra and of the vertex operators ¢(X'; w,w) in the Hilbert space H, with the
relation (79), the main consistency condition, playing a prominent role. That was, essentially,
the idea which, in the holomorphic version of CFT, has led to the concept of a vertex operator
algebra developed by Frenkel-Lepowsky-Meurman and by Borcherds. The latter, by studying
the algebras arising in the context of toroidal compactifications (on Minkowki targets) was led
to the concept of generalized Kac-Moody or (Borcherds) algebras which promise to play an
important role in physics and mathematics.
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Lecture 3. Sigma models

Contents:

1PT effective action and large deviations
Geometric sigma models

Regularization and renormalization
Renormalization group effective actions
Background field effective action

Dimensional regularization

Renormalization of sigma models to 1 loop
Renormalization group analysis of sigma models

P TN

1. 1PI effective action and large deviations

It will be useful to describe another relation between a field theoretic and a probabilistic concept.
Consider a positive measure

du(€) = ¢© De.

on a (finite dimensional) euclidean space E. We shall assume that S(£) grows faster than linearly
at infinity and, for convenience, that the measure is normalized. The characteristic functional of

dp
W) — fe<£,J> dp(€)

is then an analytic function of J in the complexified dual of E. Let N¢ = YV ¢ be the
sum of N independent random variables equally distributed with measure du. The probability
distribution of N( is

N

PX(O) = JONC= % &) T du(&)

=1

= [eNWHENWI) D, 2)

\_/

— DI [T T dul

where the J-integration is over an imaginary section of E& with DJ denoting the properly

normalized Lebesque measure on it”. We shall be interested in the behavior of Py for large N .
It is not difficult to see that

Pre() = oV Bl ISETEVT o) ey

(3)

another reading of eq. (2) says that the N-fold convolution becomes the N ™ power in the Fourier language

7
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In probability theory,

7(¢) = sup [(¢,J) = W(N)] = [(¢,]) = W(J)] (4)

JEE* C=W'(J)

(W' denotes the derivative of W) is called the “large deviation (rate) function”. It is the Legendre
transform of W(.J) which is a strictly convex function on E*. It controls the regime where
S & = O(N) as opposed to the central limit theorem which probes (& —(€)) = O(N'/?) where
(&) is the mean value of ;. Since ?7/(¢) = J, the minimum of ? occurs at ¢ = W'(0) = (¢).
The central limit theorem sees only the second derivative of 7 at (£):

lim Py((&) + N™V2%p) ~ e 2100,

N—oo

W may be recovered from 7 by the inverse Legendre transform:

W(J) = sup[(¢,J) = 7(O)] = [(¢, ) = T(¢)] : (5)

¢EE J=I"(¢)

We may compute W (.J) and ?7(() as formal power series introducing a coefficient i (the Planck
constant), Taylor expanding S(£) and separating the quadratic contribution to it:

) /e%m,ﬂ—sw] D¢
h=1

_ [e_%S(o) /e%(f,J_S/(o))—ﬁsm(o)(@)— ...... dﬂmu(o)_l(f) /e_ﬁsn(o)(f?) Df]

(6)

Hh=1

where the Gaussian measure

d/”L-hs//(o)—l (5) = f e_ﬁ 57(0)(£2) ’ (7)

Expanding the exponential under the du integral into the power series and performing the
(Gaussian integration, we obtain an expansion in powers of i which, as discussed in Kazhdan’s
lectures, gives upon exponentiation the relation

loops of G} —1
~Ls)+ 3o wmHleors ot Gl yL(gs)

L) R N Rei / o 55" (0)(€) Dg]

(8)

+h=1

where, by definition, graphs G are connected graphs® made of 1-leg vertices J or —5’(0), 3-leg
vertices —S™(0), 4-leg vertices —S™(0) etc., with propagators S”(0)~! on the internal lines®
and no propagators on the external lines. The vacuum graphs are the ones without external
lines. The amplitudes I(.J, S) are associated to the graphs in a natural way, with the symmetry
factors of the graphs included. If S is a polynomial and S’(0) = 0, then there is only a finite
number of graphs with a given number of J-vertices and a given number of loops and we may

8recall that the exponential of the sum over connected graphs is the sum over connected and disconnected
graphs
“we count lines ending at the 1-leg vertices as internal
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view W(J) as a formal series in J and in the number of loops. More exactly, comparing the left
and the right hand sides of eq. (8), we infer that

W) = =8(0) + > I6(J,8) + In(fe 25O D).

As discussed by Kazdan, by cutting all the lines of the graphs whose removal makes the graph
disconnected, we obtain the second representation for W (.J):

W) = =700) + > Iz(J,7)

vacuum
trees T

where the “1PI effective action” 7(() is defined by its formal Taylor series
20) = S(0) — 5 Ie(S) — Wm(feETO DY, v(0) = — X Ig(S),

lPiavathulCl;m 1PI graphs G
grap with 1 external line

F77(0) = 557(0) = ¥ Ia(S), 10 = = 3 Ials), (9)

. 1PI graphs G 1PI graphs G
with 2 external lines . .
with 3 external lines

where “1PI” stands for (amputated) I-particle irreducible graphs without J-vertices. Rewriting

eq. (8) with S replaced by 7, i.e. as an expansion for fe%[“’ﬂ_F(C)] D¢, but keeping only the
leading terms at i small, we obtain finally the equality

Sup (¢ ) = 2(O] = =200) + 3 Ir(7) = W),

trees T

Comparing this to eq. (5) we see that egs. (9) provide a perturbative interpretation of the large
deviation function 7.

2. Geometric sigma models
We have already discussed a simple way to write down a conformal invariant action for maps

¢ ¥ — M where (X,7) is a Riemann surface and (M,g) a Riemannian manifold. The
functional

5(6) = geldelze = 57 [ gu(@) 96 A O (10)

(summation convention!) depends only on the conformal class of v. We could add to S,(¢) also
a “topological” term

Sup9) = 5 [ o = 5 [ by(e) 09 n 0 (11)

involving a 2-form w = b;;(¢)d¢' A d¢ on M which does not depend on + but only on the

orientation of Y. Renormalizability forces addition of two more terms to the action which break
classical conformal invariance:

Stach (@) = ﬁ/ uo ¢ dv and Sg = ﬁ/ wo ¢ rdv (12)
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where u,w are functions on M called, respectively, the tachyon and the dilaton potentials'®, dv
stands for the volume measure and r for the scalar curvature of X.

One may also consider a supersymmetric version of the model (see Problem set 3) with the
action

SSUSY () = %/gzj(cb) D® D& d= A dz A do A df (13)
where the superfield
O =+ 0+ 00+ 00F.

and D = 9y +00., D = 0; + 00- . In components, after elimination of the auxiliary field F
through its equation of motion, one obtains

SV (@) = o [ (96(6) 06060 — g5(0) (ww )
§ Ri(0) 00 de ndz (1)

where V7 = 0.° + 7 ; 0.0% ! with 7M = {gl} standing for the Levi-Civita connection
symbols and similarly for Vﬂ/} and where R denotes the curvature tensor of M. Addition
of the 2-form w = b;;(¢)d¢' A d¢’ term corresponds to the change g;; — ¢;; + bi; in eq. (13). In
the component formula (14) it results in the same replacement of g¢;; and, additionally, in the
replacement of the Levi-Civita symbols in V.17 (Vzp7) by symbols of a metric connection with
torsion {/ } =& %gjm Hypp o respectively, where Hyy,, is the antisymmetric tensor representing dw.
The curvature R;j in eq.(14) becomes that of the connection with the plus sign®!

The two-dimensional field theory with action (10) is usually called a sigma model. The
stationary points of S(¢) are harmonic maps from ¥ to M and correspond to the classical
solutions. Can one quantize sigma models by giving sense to functional integrals

[ F6)ems@ D (15)

Map(X,M)

with S = Sy 4+ Siop + Stach + Saar where for F(¢) one may for example take []; u;(¢(x;)) for
some functions u; on M7 We have already seen that this was easily doable for M a torus with
a constant metric and a constant 2-form w, with vanishing (or constant) tachyon and dilaton
potentials. The corresponding functional integral was essentially Gaussian and the resulting
theory was a little decoration of the free massless field. Here we would like to examine the case
with an arbitrary topology and geometry of the target by treating the functional integrals of
the type (15) in perturbation theory and also, possibly, going beyond the purely perturbative

considerations employing powerful methods of ‘the renormalization group approach to quantum
field theories.

10the names come from the string theory context
it is equal to Ryy;; for the minus sign connection
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3. Regularization and renormalization

We may anticipate problems with the definition of functional integrals (15) even in a perturbative
approach. We shall attempt to remove these problems by using freedom to change the parameters
of the theory, namely the metric on M and the tachyon and dilaton potentials (for the sake of
simplicity, we shall discard the topological term in the action). The strategy to make sense of
functional integrals of type (15) will then be as follows:

1. (regularization) we modify the theory introducing a (short distance) cutoff A into it to
make functional integral exist;

2. (renormalization) we try to choose the metric ¢ and the tachyon and dilaton potentials
entering the action in a A-dependent way so that the cutoff versions of integrals (possibly after
further multiplication by a A-dependent factor) converge to a non-trivial limit.

There are many ways to introduce a short distance (ultra-violet) cutoff into the theory. To
simplify the problem further let us assume that X is the periodic box [—0, L]* (that will do away
with the contribution of the dilaton potential). One possibility to introduce the UV cutoff is to
consider the lattice version of the sigma model. Let ¥4 C [0, L]? be composed of points with
coordinates in %Z where AL is a power of 2. The lattice version of ¢ : [0, L]* = M is the map
¢ : Xy — M and for the cutoff action we may put

SE0) = = Y d(x).d(y) + = D ATu(o(x))

z,YyET l’EEA
le—y|=A—1

where d, stands for the metric distance on M. If ¢ is the restriction of a fixed smooth (periodic)
M-valued map on [0, L]* and u is continuous then in the limit A — oo we recover the value
of the original action S, + Siuer, = Sy - The cutoff version of the normalized integral (15) with

F(¢) =TTu;(¢(x;)) becomes now
I 1L (@) e%5+0) Do
fe—SgA,u(@ Dyo

where Dy = [[ dvy(¢(x)) with dv, denoting the metric volume measure on M. The integral
l’EEA

(16)

is finite e.g. for compact M and wu;, say, continuous. The lattice sigma models for M = SV-1

with a metric proportional to that of the unit sphere in RY are essentially well known “spin”
models in classical (as opposed to quantum) statistical mechanics (N = 1 corresponds to the
Ising model, N = 2 to a version of the XY model, N = 3 to a slightly modified classical

Heisenberg model; u proportional to a coordinate in R describes the coupling to the magnetic

field).

We would like to study if, after renormalization, the cutoff may be removed in the correlation
functions'® (16). More precisely we would like to show that the limits

) _ oA
[ 11 Z(A)us((a;)) €™ Dygyyo
L

Al—g)lo f e_sg/?A),u(A)((b) D

(17)
o(8)®

12from the point of view of statistical mechanics which reformulates the problem in terms of the system with a
fixed lattice spacing, this is a question about the large distance behavior of correlation functions
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exist for a cutoff-dependent linear map'® Z(A) on the space of functions on M and for cutoff-
dependent choices of the metric g(A) and of the tachyon potential u(A) on M. We would
also like to parametrize possible limits (17) defining the correlation functions of the quantum
two-dimensional sigma models.

4. Renormalization group effective actions

One could study the questions raised above first by perturbative methods applied directly to
the lattice correlation functions (16). It is important, however to set the perturbative scheme in
the way that does not destroy the geometric features of the model (i.e. in a way covariant under
diffeomorphisms of M). One way to assure this is to study, instead of correlation functions,
objects known under the name of renormalization group effective actions.

Fix g such that A/p is a power of 2 and for y € ¥, denote by B(y) the set of # € ¥, in the
square y 4 [0, £L[*, Call a point ¢ € M a barycenter of a set of points ¢; € M,j=1,..., N, if
¢ extremizes >, dz(qb, ¢j). Clearly, if M is a euclidean space then ¢ = %E]‘ ¢;. Suppose that
we fix a map ¢: X, - M and compute the integral

e Do = [ T 0(G5Vew X (6w), w(@)) €529 Dy, (18)

yED r€B(y)

The right hand side is naturally a measure on M. It essentially computes the probability
distribution of the barycenters ¢(y) of “spins” @(x) with x in blocks B(y)'. S/ ;(¢), the
logarithm of the the density of the right hand side w.r.t. to some reference measure D¢ on
M*» | is called the (“block spin”) renormalization group (RG) effective action on scale p.

The renormalizability problem may now be reformulated as the question about existence of
the A — oo limit of S/;;, more exactly, of the normalized measure

e—Sel}f((b) qu

_ e 19
fe—Seff((b) qu ( )

dye%}f(qb)

on M*#, if we choose “bare” ¢ and u in the A-dependent way and keep p fixed. With the
modification of the definition of S/, described in the footnote, one may show that the two
formulations of the renormalizability problem are essentially equivalent.

The limiting measures dv/;, may be viewed as describing the A = oo theory averaged over

variations of the fields on distance scales < p~!'. Pictorially, they describe the system viewed

from far away when we do not distinguish details of length < i An important observation at

the core of the RG analysis is that this averaging may be done inductively by first eliminating the
variations on the smallest scales, then on the larger ones, and so on until scale u is reached'. In

Brecall that even the free field case required a multiplicative renormalization of the correlation functions of

exponents of field ¢
14this would hold if the barycenters were unique and with the normalizing factor T

1
IVaa) D B (6().0(x) Dyo
z€B(y)
under the integral on the right hand side of eq. (18)
5this is not exactly the case for our definition of Se‘}f but ignore this for a moment
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the infinite volume ( L = 00 ), the process may be viewed as a repeated application of a map on
a space of unit lattice actions. If under the iterations the effective actions are driven to a simple
attractor (like an unstable manifold of a fixed point) then the renormalization consists of choosing
the initial “bare” actions so that the A = oo effective actions Sf;,; end up on the attractor. In the

vicinity of a fixed point this would be possible if the family of the bare actions (parametrized by
bare couplings) crosses transversally the stable manifold. The renormalized couplings parametrize
then the unstable manifold (a drawing would be helpful here). This dynamical system view
of renormalization developed by K. G. Wilson is extremely important and will hopefully be
explained in much more details in future lectures.

We have suppressed in the notation the dependence on the size I of the box. If the choice
of g(A) and u(A) involved in the A — oo limit can be done in an L independent way, we
automatically obtain a family of measures parametrized by p and L. The measures with the
product Ly fixed (to a power of 2) are related by the rescaling of space-time distances®. If the
infinite volume limit L — oo of the theory exists, 1 becomes a continuous parameter. Suppose
that the effective actions S/ of possible continuum limits (i.e. the attractor of the RG map

in the dynamical system view) may be parametrized by (dimensionless) “renormalized” metrics
g and tachyon potentials u. You should think that S/ is equal to S . plus less important

g, 12
(higher dimension) terms separated by a precise rule. We would say then that the theory is
renormalizable by a metric and a tachyon potential renormalization. This is the scenario realized
in perturbation theory, see below. In such a situations the A, L = oo theories are characterized
by the “running” metric y + g(p) and tachyon potential > u(u) describing S/;, on different
scales p in the passive view of the scale-dependence of the renormalized theory. In the active
view, the p-dependence of ¢ and w is generated by the action of rescalings of distances on the
limiting theory. The infinitesimal scale transformations generate a vector field 59, + ~v0, in the
space of (g,u) defined by

Blg,u) = p3mg,  Y(gu) = p-u. (20)

B(g,u) and v(g,u) are called in the physicists jargon the RG “beta” and “gamma functions”.
In the dynamical system language, 3d,+~0, is a vector field on the attractor of the RG map and
it extends the map to a flow. The importance of the RG functions lies in the fact that, computed
in perturbation expansion, they allow to go beyond it, providing for example a consistency check
on the latter: by solving the RG eqs. (20) with # and ~ given by few perturbative terms we
may check whether the trajectories p — (g(p), u(p)) stay or are driven out for large p (that is
at short distances) from the region of the (g, u)-space where the perturbative calculation may be
trusted. It is clear that the zeros of the (3,7) vector field should play an important role. They
correspond to scale invariant (and hence conformal invariant) field theories and, in the dynamical
system picture, to fixed points of the RG map (since they lie already on the attractor).

How to generate the perturbation expansion for the RG effective actions e 7 A helpful
observation is that the delta-function in the definition (18) can be rewritten in simple terms if
we use the exponential map e: TyM — M.

16 e. of the metric on X
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Problem 1 (geometric). Show that for vectors ¢; in a small ball in TyM ,

L N
EVQ>§: ¢7 §¢

1=
I

It follows that ¢ is a barycenter of the set of points {e%¢} iff 3¢ = 0.

Substituting in eq. (18) ¢(z) = ef@p(y) for £(x) € TypyM if x € B(y), or, in a shorthand
notation, ¢ = efd where qg(:zj) gb(y) for @ € B(y), we obtain!”

oSk [/ T 6(3 €(x)) e #5hulcsd) De%]

y€X, z€B(y)

(21)

=1

Note that the lattice field ¢ takes values in a vector space {¢{|&(x) € Ty M, X f( )=10}.
xEB

The loop expansion for S/;; may just be generated in the standard way by expanding in powers of
f on the right hand side of eq. (21) all terms except for the quadratic contribution to S, which
is used to produce a Gaussian measure. At each loop order the result will be invariant under the
simultaneous action of diffeomorphisms of M on ¢, ¢ and uv. When A — oo, divergences will
appear in the perturbative expressions. The perturbative renormalizability of the theory may be
studied by replacing the “bare” ¢ and w on the right hand side of eq. (21) by

0A) = g+ 3 KW Salg ), u(h) = 4 ( LR 5nu<g,u,A/u>). (22)

n=1 n=1

We may attempt to fix the above series by choosing some way to extract the renormalized metric
g and the renormalized potential u from effective actions S/; ;. We would then like to show that

the above substitution cancels the A — oo divergences in each loop order of S/, resulting in a

family of perturbative RG effective actions parametrized by “running” metric ¢g(p) and tachyon
potential wu(u). Differentiation of the series (22) over Inp with g(A), u(A) fixed would then
produce in the A — oo limit the loop expansion for the beta and gamma RG functions.

5. Background field effective action

In practice, the lattice perturbative calculations are prohibitively complicated. It would be
easier to work with continuum regularization and renormalization which allow to calculate the
diagram amplitudes by momentum space integrals and to make use of rotational invariance. We
have seen in Witten’s lectures on perturbative renormalization of the scalar field theories with
the ¢* or ¢* interactions that it was convenient to analyze directly the “1PI effective action”
? given by the Legendre transform of the free energy functional W . The latter was defined as
the logarithm of the integral of type of (15), with F(¢) = e{®*/}. The definition of both W
and 7, however, as well as their perturbative analysis, used heavily the linear structure in the
space of maps from the space-time to the target M. inherited from the linear structure of M.
Such structure is missing if Mis a general manifold. It is possible, nevertheless, to introduce

17the fact that the exponential parametrization may work only locally does not impede the perturbative analysis
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for sigma models an effective action mimicking the construction of the large deviations function
(see eq.(3)) and somewhat similar in spirit to the RG effective actions for the lattice version
of sigma models discussed in the previous section. Instead of fixing the block barycenters in a
single lattice theory, we shall take N independent copies of continuum theories with fields ¢,

and shall fix for each @ the barycenters ¢(x) of ¢;(x) defining the functional

Py(9) = [T10( Vot X ds(é(e),6,(x)) TTe ) Dy, (23)

by a formal functional integral. Note that the right hand side reduces to a well defined integral
for a lattice version of the theory. For a map ¢ : ¥ — M and for a section ¢ of the pullback
&*TM of the bundle tangent to M, denote by ef¢ the map from ¥ to M whose value at point
x is obtained by applying the exponential map to {(x) € Ty M . Reparametrizing in eq. (23)
¢; = e% ¢, we obtain

Px(o) = [3(26) [T D(e9). (24)

We may try to extract the “background field effective action” 7,(¢) from the leading con-
tribution to Py at large N:

PN(Qb) — oNTh(d) + o(N) (25)

It should be clear that 74(¢) coincides then with the effective action ?,4(¢ = 0) of the &-field
theory (depending on ¢ as a parameter) corresponding to the functional integral

/ _ oS pefy). (26)

Fields ¢ take values in a vector space of sections of ¢*T'M so that the perturbative treatment
of the &-theory is more standard. Note that only the geometric structure on M was used in the
formal definition of 74(¢).

We shall reformulate the renormalizability problem (17) for the second time as the question
about existence of the A — oo limit of the regularized version of the background-field effective

action 7 (¢) for a cutoff-dependent theory with the action Syay.u(a)(¢). We could regularize

the functional integral (24) by putting fields &; on a lattice with spacing % while keeping ¢

as a continuum field. This would not produce a big computational gain in comparison to the
perturbative calculation of the RG effective actions. It is possible, however, to regularize the
loop expansion of the background field effective action just by introducing an ultraviolet cutoff
in the momentum space integrals for the 1PI vacuum amplitudes in the é-field theory whose fields
form a vector space of sections of ¢*T'M. 7, A(¢) obtained this way will be covariant under the
diffeomorphisms of M in each order of the loop expansion. The perturbative renormalization
will consist of choosing the “bare” parameters of the theory in a cuttoff-dependent way as in eqs.
(22) and such that the A — oo limit of ?#(¢) exists order by order in the loop expansion. The
perturbative limits will be parametrized by the “running” metric g(x) and potential w(y) on
M, with the change of p induced by rescaling of distances on .
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6. Dimensional regularization

We shall prove the perturbative renormalizability of the background field effective action in the
2D sigma model only in the leading order of the loop expansion, concentrating instead on the
discussion of the renormalization group aspects of the 1 loop result. To avoid calculational (but
not conceptual) difficulties, we shall work in the flat euclidean space-time ¥ = E*. We shall also
use a specific scheme for regularization of divergent diagrams: the dimensional regularization
and a particular way to renormalize the theory (i.e. to chose g(A) and w(A)): the minimal
subtraction. Briefly, the idea is to

1. regularize the momentum space integrals by rewriting them as integrals into which the
space-time dimension D enters as an analytic (complex) parameter, then

2. to calculate the integral for the values of DD where it converges and, finally,

3. to analytically continue to the physical values of D extracting the pole parts of the result
at the physical dimension as the divergence to be removed by the renormalization.

In order to gain some practice let us compare how the simplest divergent diagram of the
4-dimensional ¢* theory —-O- is regularized and renormalized first in the more conventional
momentum space regularization used in Witten’s lecture and then in the dimensional regulariza-
tion - minimal subtraction scheme. The momentum space amplitude [(k) corresponding to the
(amputated) graph was given by the integral

- _/q—l—m2 qk)2+m2 - _/ /q—l—ozl—oz)k2+m2) (27)

where k is the external momentum, ¢ is that of the loop (both euclidean) and @ ¢ = (;l:)qD . In

space-time dimension D = 4 the ¢-integral diverges logarithmically. It may be regularized by
restricting the integration to |¢| < A.

= = 2 ph Ly pME R
/dOé / q +a1—a>k2+m) T 3272 lnu +A4(M27M)

la|<A

where

hm ]&4 (k—2, %) =

2 1 2 2
—92(/ dozln[oz(l—oz)k—z)—l—m—2]—|—1) (28)
0 1 1
The renormalization idea is then to substitute
o) = wh, mAA) = (v S A ) (29)

for the coupling constant and the mass squared in the initial action (recall that the theory does
not need renormalization of ¢ and only 1 loop counterterm would do). The powers of p make
A and r dimensionless. With a choice

A2 A
57“1 = —167r2 IH;
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the contribution to the 1 loop amplitude [2(k) diverging when A — co is canceled resulting in
the renormalized value of the amplitude

A 212 1 2
) = (/0 do Infa(1 - a) 5 4 1] + 1)

The RG functions B(A,r) = /,L%)\, Y2(A, ) = /,L%T describing the scale-dependence of the

renormalized couplings are obtained by differentiating eq. (29) over In p with A, g(A) and m?(A)
held fixed:

o 2dA
0 = pA+p g,
0 = polptr + his n 2+ O(FY)] = 2r + P58 — hip? s + O(F)
so that
BT = =X, whr) = =2 i 4 O(RY). (30)

Let us see how the same problem is treated in the dimensional regularization - minimal
subtraction scheme. Using the relation [;°e ™ odo = a™?, we may rewrite the integral for

fD(k) in the form!'®

A 1 %]
Ip(k) = %/0 doz/o da/ae_[q2+a(1_a)k2+m2]gdq. (31)
Performing the g-integral first, we obtain
9D+2,D/2

- 2 1 00 ) ,
Ip(k) = 97/0 da/o do o1—P12 o-la(i=a)?+m?]o

The latter integral converges for any complex D with ReD < 4. It gives explicitly

~ 2

D, (! D_
In(k) = wiw?@—?)/o da [a(1 — a)k? + m¥ %2,

The divergence in four dimensions manifests itself as a pole in the expression at D = 4;

3272 4-D

N 2 2 1
Ip(k) = 45— — o (/0 do Infa(l —a)k* +m?] + Indr + C) + O(4-D)

where C' = —7'(1) is the Euler constant. In the minimal subtraction renormalization scheme,
the amplitude is renormalized by substituting for the original coupling and mass squared

g = @BDR) g2 = (r + i_o;l h”érn()\,r)) (32)

1for those who do not remember Feynman’s famous formula (I don’t), we could have used twice the identity
fooo e”%% do; = a7 ' in the original expression for Ip(k) changing then the variables to (o, ) where o) =
ac, o3 = (1 —a)o
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with the pure pole dependence of dr, on the dimension:

kn
1
5rn = Z(Srw'()\,r) (a—Dy
=1

chosen to cancel exactly the pole part of the dimensionally regularized amplitudes. In reality,
only the 1 loop amplitude has a pole which is simple. With

§ -
= T6x2(a-D)’

we obtain the renormalized amplitude
~ 212 1 2
]ﬁren(k) = _%</0 do ln[oz(l—oz)%—l—r] + In (47) + C)

(note how y has entered under the logarithm). The difference between the two renormalizations
may be absorbed into a finite redefinitions of the renormalized parameters A, r, see Problem 2
below.

Now the RG functions B(A,r), v2(A,r) are obtained by differentiating eqs. (32) with respect
to Inp while keeping ¢ and m? fixed:

0 = (- D P
0 = pi-[W’r + i) = nas e + b i)
= Ul 4+ )P — bt o
so that
B = (2 =30, whr) = —2r + hio (33)

The gain is that we have obtained formulae for 3 and ~; in general dimension. They may
serve as an indication of how the field theory behave in smaller or larger dimension then the
one considered. For example, the vanishing of the linear contribution to #(A) in 6 dimensions
signals that the theory becomes only renormalizable there. Note that eqgs. (33) reduce to (30)
at D = 4. This did not have to be the case since we have changed the parametrization of the
limiting theories and what is geometrically defined is the vector field 30\ + 720, .

Problem 2. Find to the 1 loop order the transformation between the coordinates (A,r)

of the renormalized 4-dimensional ¢ theory corresponding to the passage between the two
renormalization schemes discussed above. Show that it preserves the form of the vector field

ﬁa/\ + 7287’ .

Problem 3. Find the running couplings A(u), r(x) using the 1 loop approximations to the
B, 72 functions. What can one tell about the effect of higher loop corrections to the large u
(UV) behavior of the running couplings?
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The four-dimensional ¢ theory, in spite of its super-renormalizability (only a finite number of
divergent 1PI graphs) and self-consistency of its perturbative calculations, has a non-perturbative
stability problem related to the lack of a lower bound for the cubic polynomial. This should serve
as a warning that even the RG improved perturbative analysis is not enough to assure existence
of a renormalized QFT.

7. Renormalization of the sigma models to 1 loop

As mentioned above, the background field effective action 7;(¢) of the sigma model is equal to
the ¢ = 0 value of the effective action of the £-theory with the action S4(€) given by the relation

e 50u(e0) D (efg) = e %) Dg.

The 1% of eqs. (9) implies then that in the perturbation expansion

70(8) = 5(0) = Y Ta(S,) — In( [ EEOE ey, (34)

1PI vacuum
graphs G

One of the simplifying features of the dimensional regularization is that we may disregard the
Dg(e*9)

2 ng

they are proportional to 5(2)(0) = [ @& ¢ which vanishes in the dimensional regularization.

terms in S4(€) coming from the logarithm of the “Radon-Nikodym derivative . Formally,

Problem 4. (a). (for Pasha). Show by calculating the D-dimensional integral [e~% dg in

two ways that the volume of the unit sphere in D dimensions is equal to 27T§/? (2).

(b). Show that in the radial variables the D-dimensional integral [ dg converges for Re D < 0:
lg|>e

o 21—=Dr=D/2 p
/ dq = — Dr(D/2) © -
lg|>e

Defining the value of the integral by analytic continuation for integer D > 0 and taking € to
zero we infer that [ @ ¢ vanishes in positive dimensions in the dimensional regularization.

Expanding in local coordinates
(f0) = &' +& = 370" + 0

where 7;k = {;k} is the Levi-Civita symbol, we obtain after a little calculation (you may do it!)

Spalefd) = — <gij(¢) 0,0 0,8 + u(d) + 2gii(0) ' V.& + () £
+ 05(0) Vol Vo = Riu(6) 0,60 0,6° €' € + IViou(0) €6 )do + O(€). (3)
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Above, V; denotes the covariant derivative over the i*" coordinate and
vugi = al/g + ?;k(qb) avqu fk

The vector bundle ¢*T'M has a natural metric given by ¢*¢g. It will be convenient to choose a
global orthonormal frame (e,)/_; of ¢*T'M (d denotes the dimension on M) In coordinates,
eq = €40, . Different choices of ¢, are related by gauge transformations e/, = )\2 e, with A an

SO(d)-valued function on the plane E*. Of course ¢’ depend also on ﬁeld ¢. It will be more
convenient to rewrite

E=Ee or  =(¢

with (£%) a sequence of functions on E*. The expansion (35) becomes then

Sule’d) = = [ (00(0) 06 0.6 + u(e) + 26 D6TLE + L Du() €

1

F AT = Ranl9) 0,0 0,6 € € + Ll Vithu(o) €€ )du + O(E).  (36)

7
a

where (e?) is the matrix inverse to (e.), Rium = elel Ry and

V. = 0,6+ ALe with AL =€ (Oueh + 70,00 ef)

Clearly, Af, dx” transforms as an SO(d) connection form under the gauge transformations
o + Al ey . The perturbation expansion (34) for ?4(¢) becomes now to the 1 loop order:

) = o [ (950606 0,67 + u(9)) de
—In (/ e—ﬁ f((Vyga)2 — Riags(9) 8ot dudF €0 ¢b + + Le JbV dju(d) fafb) dz Df) + O(ﬁ) (37)

(the terms linear in & on the right hand side of (35) do not contribute to 7). The functional
integral gives a determinant and we could use the zeta-function prescription to make sense out of
it in an SO(d)-gauge-invariant way. We shall be, however, more interested in the divergent part
of the determinant than in its renormalized value. The dimensional regularization will allow to
extract the divergence in a convenient (.SO(d)-gauge-invariant) manner and, besides, it works to
all orders.

We shall obtain the expression for the 1 loop contribution to ?7;(¢) expanded around a
constant value ¢y of ¢ in the form (in coordinates around ¢y )

n

[?b(¢)]1100p — Z/I(n,D(xlv"-vxn;qu H qbo dl'] (38)

with the translationally invariant kernels K, p regularized dimensionally, i.e. meromorphically
dependent on D, with possible poles at D = 2 and with ¢ — ¢y vanishing fast at infinity. In

order to generate the expansion (38) for the 1 loop contribution to ?4(¢), we shall separate the
term

(0t s etwamiace)
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in the action as producing the Gaussian measure'® from
= [ (2Anaee + Az e €+ 3 (AdTidulo) - (e Vidu)la,) €€
— Ruis(9) 0,6 0,65 €0 € ) de

treated as an interaction. Now it is easy to enumerate the divergent graphs. First there are
logarithmically divergent contributions coming from the graphs

Q a O ay

Ay Ay

They cancel each other (there are no divergences in 2D gauge theory). The only divergent terms
we are left with are

0

— R 8¢ 8¢ %eevau—%(eevﬁu)|¢0

O

and b det & (<0uA + HAAT D)L ) - (39)

All other contributions are easily checked to have finite limits at D = 2. Since in the dimensional
regularization

[ Ay = [ do [ dg = 27D DI [ g gD/ e

= 27 Dp=D2pP=22(1 - D/2) = - 525 + part regular at D = 2,
the pole part of the loops in (39) is equal to

1 1

£ [ (= Ranal6) 06 0,6° + L(Agu(0) — Agu(on) ) d
(since e el V:0;u = ¢V.:0;u = Ayju where A, denotes the Laplacian on M). Similarly,
1 In det 5~ (—A5ab + %(eéeg viaju)|¢0) = $[de[trIn & (q2 + leevau|¢0) dq

= const. + L [dx fydttr m eeVauls dq

= const. + £ 525 [ Ayu(cp) da

We infer that the pole part of 7,(¢) to the 1 loop order is

1 loop i .
24(6)], — L [ Ra@) 06 0,60 de + & [ Agu(o) da
where R;; = Ri,j. is the Ricci tensor on M. [?b(qb)];vlwp is an integral of dimension 2 and

dimension 0 operators and this result, in accord with a simple power counting, remains true at
higher orders.

9we assume that the matrix ((efle‘g Vi0;u)|g,) 1is positive which is the case, for example, in the vicinity of a

minimum of u
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The minimal subtraction renormalization scheme adds counterterms to bare metric g and
bare potential u which cancel the above poles. More exactly, one substitutes in the initial action
Sgo (@) of the model with the bare metric go and bare tachyon potential ug,

o = pP7 g+ 500 + O(FY)), (40)
w = pP(u+ s 0u + ORY)). (41)

The added 1 loop counterterms change the effective action by

D—2

50(6) = =40 [ (5015(6) 0,6 0,67 + 4 bur(@)) dx + O(F)

and we put
1
ogii; = Rij, Suy = —3 Agu.

canceling the poles at D = 2. This proves the renormalizability of the sigma model (background
field effective action) to 1 loop.

8. Renormalization group analysis of sigma models

Let us compute the vector field 39, +~0, on the space of metrics and potentials as given by the
minimal subtraction version of egs. (20):

2]
u) = p—u 42
go=const. ’ 7(97 ) ILL du go=const. ( )
ug=const. ug=const.

Blg,u) = pi-g

Applying the derivative ﬁ to eq. (40), we obtain

0 = /«Lﬁ[/«bD_2 (9: + 25 Rij + O(ﬁz))] = Mﬁ[MD_Q (95 + 325 Roij + O(ﬁz))]
= pP? [ﬁz’j(g) — (2= D)gi; — hRij + O(ﬁz)]
from which we infer that
Bi(g) = (2= D)g; + i Ry + O(F°). (43)
Similarly,
40 i+ 0] = w0
_ P [’y(u) 4 Du 4 B Au + (’)(ﬁ?)]

so that



The vector field 3 in the space of metrics may be used to find out in which situations we
may expect the perturbative calculation to be self-consistent. The condition is that the running
metric g(p) satisfying the RG equation

pg = Blg) (45)

stays on all scales p1 > po in the perturbative regime. Let us illustrate this on the example where
M = SN=1 with the metric i times the induced metric g of the unit sphere in R™. Due to

the rotational symmetry, the renormalized metric is mg and the eq. (45) for its pu-dependence
reduces in D =2 to

ool = h(2=N)(@)? + O(").

Clearly, for N > 2., o' is driven to zero for large u approximately as O(ﬁ) The perturbative

regime corresponds to small o so that the perturbative expansion is self-consistent for the sigma
model with M = SN~! for N > 2. The phenomenon is called the asymptotic freedom of the
spherical sigma model since o/ = 0 corresponds to a free theory. It permits to expect that the
theory may be constructed non-perturbatively, at least in finite volume. Such a non-perturbative
theory would break the conformal invariance of the classical sigma model. In fact, there are
strong reasons to believe that its infinite volume version is massive (an exact expression for its
S-matrix is, conjecturally, known).

The property of asymptotic freedom is shared by all the sigma models which have compact
symmetric spaces as their targets (and also, more importantly, by the non-abelian 4-dimensional
gauge theories with not too many fermion species, like Quantum Chromodynamics (QCD) de-
scribing the strong interactions of quarks, mediated by SUs gauge fields).

Problem 5. Consider the flow

/,L%Oé = —a?, /,L%u = —2u + u« (46)

in R%. Show that there exist only one perturbative solution
Yy p
u = Z a,o" (47)
n=0

for the invariant manifold of the flow. Study the (non-perturbative) invariant manifolds.

Specially interesting cases correspond to manifolds with vanishing Ricci curvature. The N =
2 spherical sigma model is the simplest example (coinciding with free field with values in S').
As we know, it corresponds to a CFT. One may then read from the ~ function the dimensions
equal to d, = +¢* of the composite operators given by the exponential functions e? on S!. d,

are equal to the eigenvalues of —1A, (the tree contribution to the v comes from the fact that we

have considered integrated insertions of the composite operator into the action). For Ricci flat
targets there is no renormalization of the metric in the 1 loop order and, in the supersymmetric
versions, up to 4 loops (4 loops excluded). No renormalization of the metric means that the
beta function vanishes and the scale invariance is preserved (to 4 loops). One may then argue
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in perturbation theory (studying the Hessian of the 1 loop () that in the K&hlerian case, the
Ricci flat metric may be perturbed as to give rise to a scale invariant quantum sigma model with
N = 2 superconformal symmetry (as discussed by Ed Witten during the lecture). Thus Calabi-
Yau (= Kahler, Ricci flat) manifolds should correspond to superconformal N = 2 field theories.
This observation resulted in a conjectured mirror symmetry between Calabi-Yau manifolds, now
established in many instances.

In the case of SUSY sigma models with hyper-Kahler targets (i.e. with the N = 4 super-
symmetry), # vanishes to all orders of the loop expansion.

The inclusion of the 2-form term (11) into the action of the sigma models modifies the above
results. In the 1 loop order, the beta function /,L%(gij + b;;) is given by the Ricci curvature of

the metric connection with torsion 7;k = {;k} + %g” H ;i where the antisymmetric tensor Hj
corresponds to +dw. In models in which the connections with torsion are globally flat, the beta
function vanishes to all orders (even without supersymmetry). The WZW model of CFT, which
we shall discuss in the next lecture, corresponds to such a situation. Addition of the 2-form
which is closed does not modify the § function but may change the long-distance behavior of the
model (that seems to happen for the sigma model with S? target where the addition of the term
with w equal to 7 times the volume form of the unit sphere should render the model massless).

As for the renormalization of the potentials whose scale-dependence is governed by the RG
equation

/,L%u = —2u — %ﬁAgu + O(ﬁQ)

note that, on a symmetric space, u (approximately) reproduces itself up to a normalization if it
belongs to an eigen-subspace of the Laplacian. The RG analysis allows then to predict the short
distance behavior of the correlation functions involving insertions of the corresponding composite

operators (somewhat similarly as for M = S').

References
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Lecture 4. Constructive conformal field theory

Contents:

WZW model

auge symmetry Ward identities
Scalar product of non-abelian theta functions

K7B connection
oset theories
factory

CuR O o

Let us recall the logical structure of this course. In the first lecture we studied the free
field examples of CFT’s. In the second one, we analyzed the scheme of (two-dimensional) CFT
from a more abstract, axiomatic point of view. In the third one, we searched perturbatively
among geometric sigma models for non-free examples of CFT’s. Finally, in the present lecture
compressed due to lack of time, we shall analyze a specially important sigma model, the Wess-
Zumino-Witten (WZW) one, whose correlation functions may be constructed non-perturbatively,
with a degree of explicitness comparable to that attained for toroidal compactifications of free
fields (constituting the simplest examples of WZW theories). The WZW model appears to be
a generating theory of a vast family of CFT’s whose correlations can be expressed in terms
of the WZW ones. The comparison of the non-perturbative models obtained this way with
the perturbative constructions of sigma models allows for highly non-trivial tests of differences
between the geometry of Ricci flat (Einstein) spaces and that of CFT’s, replacing the Einstein
geometry in the stringy approach to gravity.

1. WZW model

The target space of the WZW sigma model is a compact Lie group manifold G and the two-
dimensional theory may be considered as a generalization of quantum mechanics of a particle
moving on (. In the latter case the (Fuclidean) action functional is

g) = —%/tr(g‘1 Lg)% dx (2)

where "tr” denotes the Killing form?°. Let R denote an (irreducible) unitary representation

g — g, of G in a (finite dimensional) Hilbert space V,,. The path integral for the quantum-
mechanical particle on () corresponding to the Wiener measure on (&, may be solved with the
use of the Feynman-Kac formula taking the form

/ ®gR e k8l Hdg / / e sl dg()

Map OLpeh Map 0Lper7

ZOnormalized so that the long roots have length squared 2
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= Tr e_g“HgR1 (3(9”2_9“)1115]1%2 o g, ebmzn)H / Tr e 2 (3)
where 0 <y <2y <--- <2, <L, 2kH is the Laplacian on (G and g, is viewed as a matrix of
multiplication operators, both acting in L?((,dg) (dg is the Haar measure). Compare Problem

3 in Lecture 1 dealing with the case G = S!. The theory possesses the G x G symmetry which
may be used to solve it: the right hand side of (3) is calculable in terms of the harmonic analysis

on (.

Problem 1. Compute explicitly the 1-,2- and 3-point functions in (3).

The Euclidean action of the WZW model is a functional on Map(X, ) where ¥ is a compact
Riemann surface. If, for simplicity, we assume GG to be connected and simply connected then

S(g) = —ﬁ/trg_l@g/\g‘lég + ﬁ/g*w (4)
b b

where the 2-form w is defined on open subsets O C G with Hy(O) = 0 and satisfies there
dw = —5tr (¢~ *dg)"*. The dependence of the second term of S(g) on the choice of w makes

S(g) defined modulo 2miZ so that e *5(9) is well defined for integer k. To have the energy
bounded below, we shall take k, called the level of the WZW model, positive.

Problem 2. Assuming, more generally, that g takes values in the complexified group G€ find
the equations for stationary points of S(g).

The correlation functions of the WZW model are formally given by the functional integrals:

I®z

(Do) = [ Do) e 0 g [ [ 0Dy e DEnav,) )

MapEG Map(X,G)

where Dg stands for the formal product of the Haar measures dg(x) over x € 3.

As we have mentioned at the end of Lecture 3, the renormalization group beta function com-
puted for the WZW sigma model vanishes to all orders due to the flatness of the connections
with torsion generated from the metric and the 2-form w on GG. Thus the model is conformally
invariant and does not need renormalization of the action (4) in perturbation theory. The con-
formal invariance holds, in fact, also non-perturbatively due to the LG x LG symmetry of the
theory where LG denotes the loop group Map(S*, G) of G. The WZW model may be solved
exactly by

1. harmonic analysis on LG
or by

2. exact functional integration.

As we shall see, the (matrix-valued) composite operators ¢, (x) need multiplicative renormaliza-

tion and acquire scaling dimensions where ¢, denotes the quadratic Casimir of R and h"Y

°R
kthY
stands for the dual Coxeter number of (& (the quadratic Casimir of the adjoint representation).
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2. Gauge symmetry Ward identities

We shall sketch here the functional integral approach to the WZW theory. It will be convenient
to extend a little the model by coupling it to an external gauge field?! A = A® + A% a 1-form
with values in the complexified Lie algebra g€ of (. Define*?

S(g.A) = Slg) + 5 /tr [AY N g™tag + gdg~" A A" + gA¥gTE A A, (6)
p)

Under the ("chiral”) gauge transformations corresponding to maps hiy : ¥ — G€ the action
S(g, A) transforms according to the Polyakov-Wiegmann formula

S(hQ.ghl_lv hlAlO + h2AOl) = S(gv Al + AOl) o S(hlv Alo) - S(h2_17 AOl) (7)
where M40 = by AATY + Ry OhT and 2A%N = Ay AOVRSY 4+ hoOhyt.

Problem 3. Prove the Polyakov-Wiegmann formula.

In the presence of the external gauge field A, the partition function of the WZW theory will be
formally defined as

7, = / e~kS4) pg (8)

A
Map(X,G)

and the correlation functions (@g, (7)), by eq.(5) with S(g) replaced by S(g,A) (no func-
tional integration over A). Using the formal extension to functional integrals of the simple

invariance property
[ fliaghitydg = [ f(g)d
G G

holding for hy, € GC if f is an analytic function on G we obtain

i —1 P1g10 , P2401
<®gR( )>h1 1410 4 12401 = /g(hzgh ( ) —kS(h2gh A0 44 )Dg
ok S(h1, AY) (kS(hy ", A%) ) @(ha), (7)) Z, (@gy (2:)), ®<h1);($i)' (9)

K3 K3

k110 1 P2401

This is the chiral gauge symmetry Ward identity for the correlation functions (recall the diffeo-
morphism group and the local rescaling Ward identities discussed in Lecture 2).

The identity (9) factorizes into a holomorphic (A% -dependent) and an anti-holomorphic ( A°-
dependent) ones. Hence in order to study the A%-dependence of the correlation functions it is
enough to look for holomorphic maps on a Sobolev space of 0,1-forms?® A% with values in g

U oA évm =V,

215
22

in general, we shall not assume the unitarity A = —A* of the gauge field
a more standard definition subtracts also A!® A A°! inside [...]
Z3what follows does not depend on the assumed degree of smoothness of forms provided it is high enough
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satisfying the "factorized” Ward identity

\I;(%Ol) _ ekS(h—17A01) ,(%1 hRi(xi) q;(AOI) (10)
The relation (10) describes the behavior of ¥ along the orbits of the group G€ of complex
(Sobolev-class) gauge transformations in A%. The orbit space A%/GC is the moduli space
of holomorphic GG¢ bundles which, upon restriction to semi-stable bundles and appropriate
treatment of semi-stable but not stable ones, becomes a compact variety A of complex di-
mension 0, rank(G) and dim(G)(h, — 1) for genus hy equal to 0, 1 and > 1, respectively.
The space W(X,x,R,k) of U’s coincides with the space H®(V) of holomorphic sections of
a vector bundle V over N with typical fiber V, (V = A% Xoo Va essentially). In another

description, W(X,x,R,k) = H°(L) where L is a line bundle over the moduli space of holo-
morphic GC-bundles with parabolic structures at points z; and W’s may be interpreted as a
non-abelian generalization of theta functions. The essential implication of these identifications is
that W(X,x,R, k) is a finite-dimensional space. Its dimension depends, in fact, only on A, k
and R and is given by the celebrated Verlinde formula. W (X,x,R, k) may be also identified
with the space of quantum states of the Chern Simons theory.

Out of the global Ward identities (9) one may extract the infinitesimal ones by taking h; =
e’ and Taylor-expanding in A; similarly as we analyzed the infinitesimal consequences of the
diffeomorphism and rescaling Ward identities in Lecture 2. Define the insertions of currents into
the correlations by

. 1§
<JZ"‘>A - _WZ_A(SA% A< >A7
. s
<‘]2"'>A - _TFZ_A(SAg A< >A

(the subscript 7a” corresponds to a basis (t*) of the Lie algebra g s.t. trt*¢* = 1§°*). Denote by
J(z) (J(2)) the insertions of J, (J:) into correlations with A vanishing around the insertion

point and the metric locally flat. J(z) (J(2)) depends holomorphically (anti-holomorphically)
on z away from other insertions. Expanding to the second order, one obtains from the Ward
identities (9) the operator product expansions

5abk 9 © rabe
oo i

J(2) Jb(w) = = w)? — (w) + ..., (11)
Jwaﬁ@g:(ff£2_jf;fm)+..., (12)
JH=) Pw) = ... (13)

which imply for the modes of the corresponding Hilbert space operators J(z) = 3, Szt
J(z)=3_ J,z7""! the Kac-Moody algebra relations

[Ty Tl = 0 T

1 ab
+ 2 kn 5 5n—l—m,0
and similarly for J, with the commutators between J,, and J,, vanishing.
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Problem 4. Prove the operator product expansions (11-13).

Subtraction of the singular part from the expression tr .J(z)J(w) gives the Sugawara con-
struction of the energy-momentum tensor of the WZW theory:

T(w) =

lim (tr J(z) J(w) — dim(G)k)

k+hY 250w 4(z—w)?

and similarly for T'(w). In modes, this becomes

5 0
Ln = m Z tr :Jn—mt]m

m=—00

where the normal ordering puts J, with positive p to the right of the ones with negative p.

3. Scalar product of non-abelian theta functions

. coincides

with that of W(—(A)*) (recall that the complex conjugate space V,, = V>), we must have

Since the A'%-dependence of the unnormalized correlation functions Z, (@g, (;))

Z,(Qgy (i), € W(E xR k)0 W(E,x R,k
as a function of A or, more explicitly,
Z, (@, (i) ), = H Wa(A™) @ Ws(—(AT)) (14)

where (W,) is a basis of W(X,x,R,k), (H*?) is an x-dependent matrix and the summa-
tion convention is assumed. From formal reality properties of the functional integral defining
7, {®g, (z;)), one may see that (H*?) should be a hermitian matrix. In fact one may argue

that the inverse matrix (Hg,) corresponds to the scalar product on the space W (X, x, R, k) of
non-abelian theta functions:

Hgo = (W5, Vo) (15)
where (-, ) is formally given by
(\I/, \I//) — /(\I/(AOI), q}/(AOI))VR e—%HAHiz DA (16)

with the integration over the unitary gauge fields A with A' = —(A°)*. The scalar product
(16) is exactly the one which gives the probability amplitudes between the states of the Chern-
Simons theory. Expressions (14) and (15) for the correlation functions may be expressed in a
basis-independent way as follows. Let e401 denote the evaluation map

W(E,x, R k) 3 U 2% §(A") e V.
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e 00 may be considered as an element of V, @ W(X,x, R, k)* and using the scalar product dual
to (16) on the second factor, we obtain the equality

ZA <®gRi(xi) >A = (eAOlv e—(Alo)*) (17)
viewed as a relation between the V,, @ V_R—Valued functionals of A.

Let us present a functional integral proof of the relation (16). Denote Z, (2g, (7)), = 7(A).
Consider the integral over the unitary gauge fields B

/?(BIO_I_AOI) 7(A 4 BoY e—%HBHiQ DB

= [ gl o O U LN
=1 o

c e ST BN 01 4 91 BIOGT AL 4 02007 ABOY 40141005 AB - BABY o Do DB

- /@%(9192) (2;) e~ kS0 =kS(92) = g JAT [T A9 502 49197 AA]
=1 Bi

oo [T 192005 4924005 )N (97 91 +97 A% 1) Dgy Dy,
N /i(—%(glgz)l%(xi) o FlorozA) Dgy Dgy, = ?(A)

where the 2°¢ equality is obtained by a straightforward Gaussian integration over B. Upon the

substitution of relations (14) and (16), the last identity becomes
HPHY (W, W, ) Wo(AM) @ Ws(—(A10)7) = H™ W, (A%) @ Ws(—(A10)%)

or H*¥ H" (W5, W) = H* from which the relation (15) follows if we also assume that (H?)
is an invertible matrix.

The above expressions reduce the calculation of the correlation functions of the WZW model
to that of the functional integral (16). The latter appears easier to calculate then the original
functional integral (5). In the first step, the integral (16) may be rewritten by a trick resembling
the Faddeev-Popov treatment of gauge theory functional integrals. The reparametrization of the

gauge fields

A0 h_lAOI(n) (18)

by chiral gauge transforms of a (local) slice n + A% (n) in A’ cutting each GC-orbit once?t

gives

e|® = /(\I’(Am(n)a®(hh*);f\1’(Am(n))v

R

QU+ SR A 1 (hp*) dpr, (n). (19)

The term 2hYS(hh*) in the action comes from the Jacobian of the change of variables (18)
contributing also to the measure du,(n). The latter is defined as follows. Denote by S the

composition of the derivative of the map n — A% (n) with the canonical projection of A% onto
the cokernel of 9+[A% (n), -]. Then the volume form i, (n) on the slice is the composition of the

24in genus 0 and 1, h € G€ should be additionally restricted
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determinant (= the maximal exterior power) of S with the Quillen metric on the determinant

bundle of the family (9 4 [A°(n), - ]) of d-operators?®.

Unlike in the standard Faddeev-Popov setup, the integral over the group of gauge transfor-
mations did not drop out since the integrand in (16) is invariant only under the G-valued gauge
transformations. Instead we are left with a functional integral (19) similar to the one (5) for the
original correlation functions, except that it is over fields hh* which may be considered as taking
values in the hyperbolic space G€/G. D(hh*) is the formal product of GC-invariant measures
on (GC/G. The gain is that the functional integral (19) may be reduced to an explicitly doable
iterative Gaussian integral. For example for ¢ = SU(2) and at genus 0 where we may take

A% (n) =0,

S(hh") = —%/&b/\éqﬁ - %/(8+8¢)@/\(5+5¢)v

in the Iwasawa parametrization h = (e%ﬂ _%/2 ) ( (1) {)u of the 3-dimensional hyperboloid
e

SLy(C)/SU; by ¢ € R and v € C (u € SU,). Field v enters quadratically into the action

and polynomially into insertions. Hence the v-integral is Gaussian and its explicit calculation
requires the knowledge of the determinant of the operator (—d + 9¢)(d + 0¢) = —e®de2%0e?
and of the propagator

ez(b(y) dzy
(21— Y)Yy — z2)

(=0 +00)(0+00)) (21, ) ~ o700 [ (20)

The ¢-dependence of Indet((—0d + 0¢)(0 + d¢)) is given by the chiral anomaly (or local index
theorem) and is the sum of a local quadratic and a linear term. The resulting ¢-field integral
appears to be also Gaussian (of the type encountered in functional-integral representations of
a 2-dimensional Coulomb gas correlation functions in statistical mechanics). Similar iterative
procedure based on the Iwasawa parametrization of G°/G works for arbitrary G and also at
higher genera. A result becomes a finite-dimensional integral over parameters y, € ¥ in the
expressions of the type (20) for the v-field propagators (positions of the "screening charges” in

the Coulomb gas interpretation) and, at genus hy, > 0, over (a part of) the moduli parameters
n.

At genus 0, the GC-orbit of A% = 0 is dense in A%, As a result ¥ € W(CP!,x,R,k) is
fully determined by W(0) € (V,), the G-invariant subspace of V,,. Hence
W(CP' . x,R,k) C (V,

W)

canonically. For G = SU, the representations R; are labeled by integer or half-integer spins 7;
and the representation spaces Vj, are spanned by vectors (flvji)lzoylw%, where v;; is the highest

weight (HW) vector annihilated by e, with (e, f,h) the usual basis of sly. One has, using the
standard complex variable z on CP! to label the insertion points,

W(CP',z,j.k) = {ve (V) | (v, [[efe™v)=0if N<J—k—1}

Zagain, the cases of genus 0 or 1 require minor modifications
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where e¢:1®1---®1®§®1®---®1, N =3 n and J =35 In particular, for 2 or 3

points,

(V)57 it J<k,

1 . .
W(CP.,z,j.k) = { {0} i J >k

and does not depend on z. The scalar product (16) is given by

ol = flo.2.5.k) [ |(0,w(z,y)) e m" Hcﬂya (21)

CJ
where
Ji(Ji+1) 3/2
. L2t o(z)+ — ||dcr|| det’(—A)
f(O',Z,J,k) Z k+2 16 k+2 (@)
carries the dependence on the metric e”|dz|* on CP', y = (y1,...,4s), w(z,y) is a meromorphic

\/j—valued function

n

J
1 n
H Z Ya — 24 fZ igl Uji

a=1:=1

and U(z,y) is a multivalued function

= Z]Z-]Z/ IH(ZZ — Zi') — Z]Z lﬂ( - ya + Z lﬂ - ya

13! 7,a a<la’

Integral (21) is over a positive density with singularities at coinciding y, and the question arises
as to whether it does converge. A natural conjecture is that the integral is convergent if and
only if v € W(CP', x, R, k) C (V,)“ (the only if part is easy). For 2- or 3-point functions the
integrals can indeed be computed explicitly confirming the conjecture. Numerous other special
cases have been checked. However, the general case of the conjecture remains to be verified. Note
that the dependence of the scalar product (21) on the conformal factor o agrees with the value

m of the central charge of the SU; WZW theory and with the values A; = A; (]ji'zl) of

the conformal dimensions of field g¢;(x) (it is the inverse of f(o,x%,], k) Wthh enters the W7ZW
correlation functions).

Explicit finite-dimensional integral formulae for the scalar product (16) have been also ob-
tained for general groups and at genus 1 and, for G = SU,, for higher genera”®. The proof of the
convergence of the corresponding integrals is the only missing element in the explicit construction
of all correlation functions of the WZW theory although several special cases have been settled
completely.

26it is clear that the case of general group and genus >1 could be treated along the same lines
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4. KZB connection

The spaces W(X,x,R, k) of non-abelian theta functions depend on the complex structures
of the surface ¥ and on the insertion points. The complex structures J € 7 (EndTY), J* = —1,
form a complex (infinite dimensional Fréchet) manifold on which the group of Diffeomorphisms
of ¥ acts naturally. The holomorphic tangent vectors to the quotient moduli space §.J = du
correspond to sections of EndTCY satisfying Jéu = —duJ = idu. Locally, du may be rep-
resented as dpZd. @ dz in J-complex coordinates. The family of spaces W (X, x, R, k) forms a
complex finite-dimensional bundle W(R, k) over the space of complex structures and n-tuples
of noncoincident points x in X.

The bundle W(R, k) may be supplied with a natural (w.r.t. the action of diffecomorphisms
of ¥) connection V provided that we choose (smoothly) for each J a compatible metric on
Y. The connections for different choices of the metric are related by the conformal anomaly. If
(J,x,A) — ¥(J,x,A) depending holomorphically on A% = A(1+:J)/2 (A = —A* is assumed)
represents a local section of W(R, k), then

k 01 015,
vmq;:quurg(/tm A A 5,,L)x1;, (22)
VU = 00 (A7, (23)
VU= d, W - s (/ T(Z)a,,@d?z) v, (24)

. 218 . ta
VZi\I/ = 621, + Zh_)rgll k+/’lLv (J (z) + Z_Zi) [ (25)

Above z denotes a J-complex coordinate on X and d; ¥ or dé_\I/ stands for the directional
"

derivatives of ¥ when the points x and A are kept constant. The first two equations equip

W(R, k) with a structure of a holomorphic vector bundle. In the last 2 equations, the metric on

Y is assumed for simplicity to satisfy v** = 2, 6v** = 2§uZ and A is taken vanishing around

the support of du or around the insertion point z; and §u = O((z — z)?).

In the genus 0 case, W(R, k) is a subbundle of the trivial bundle with the fiber (V)¢ and
the connection V extends to the bigger bundle and is given by

2 R 1
Vo =0, V=0 +gw)atn = 0.+ g Hile)
£

for the metric flat around the insertions. The commuting operators H;(z) € End(V) are known
as the Gaudin Hamiltonians. The corresponding flat connection appeared (implicitly) in the
work of Knizhnik-Zamolodchikov on the WZW theory. The higher genus generalizations of the
KZ connection were first studied by Bernard. We shall call the connection defined by eqs. (22-25)
the KZB connection. In general, it is only projectively flat.

One of the basic open questions concerning the KZB connection is whether it is unitarizable.
In other words, whether there exists a hermitian structure on the bundle W(R, k) preserved
by V. It was conjectured that the answer to this question is positive and that it is exactly the
scalar product on spaces W(X,x,R, k) discussed above that provides the required hermitian
structure. Note that a 0,1 unitary connection on a holomorphic hermitian vector bundle is
uniquely determined. Recall that the scalar product, given formally by the gauge field functional
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integral (16), may be reduced to a finite-dimensional integral which, if convergent, defines a
positive hermitian form on W (X, x, R, k) and determines the unitary connection (and the energy
momenstum tensor of the WZW theory). For genus 0 and G = SU,, where the scalar product
is given by integral (21), the unitarity of the K7 connection requires that

1
d.,(v,v) = (v, (0, _mHi)U) (26)
for a holomorphic family z — v(z) € W(CP!',z,j,k) C VjSU2. Assuming the convergence of the

integrals permitting to differentiate under the integral and to integrate by parts, the above is a
consequence of the relation

<9z,+ WH(Z)) (wlzy) e m= ) =y, (a7 ) (27)
where
ni,a(z7y - Yol — 241 i/ igl U]l
a'#ai'=1

Identity (27) is equivalent to two relations:

aziw(Z7Y) = ayam a(z Y)
2.,U(z,y) w(z,y) — 0y, U(2,¥) :.4(2,y) — Hi(z) w(z,y) = 0. (28)

The first one is immediate whereas the second, more involved one implies that
Hi(z) w(z,y) = Q. Uxy)w(zy) i 9,Uxy)=0

i.e. the Bethe Ansatz diagonalization of the Gaudin Hamiltonians H;(z): vectors w(z,y) are
common eigenvectors of H;(z), 1 = 1,...,n with eigenvalues 0,,U(z,y) provided that y satisfies
the Bethe Ansatz equations d,,U(x,y) = 0. The relations between the Bethe Ansatz and the

limit of the KZB connection when k — —h" appear in the context of Langlands geometric
correspondence. These relations seem also to be at the heart of the question about the unitarity
of the KZB connection at positive integer k.

5. Coset theories

There is a rich family of CFT’s which may be obtained from the WZW models by a simple
procedure known under the name of a coset construction. On the functional integral level,
the procedure consists of coupling the G-group WZW theory to a subgroup H C (G unitary
gauge field B which is also integrated over with gauge-invariant insertions. Let us assume, for

simplicity, that H is connected and simply connected, as /. Let ¢; € (Hom(V,, Vrl))H be

intertwiners of the action of H in the irreducible G- and H-representation spaces, respectively.
The simplest correlation functions of the G/H coset theory take the form

<Htrti93i( /Htr tigy, (vi)1] e” Sl9.B DgDB// B)Dg DB. (29)
=1
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Note that the g-field integrals are the ones of the WZW theory and are given by eq. (14). Denoting
Ly = [e #5:B) Dg DB, we obtain

G/

k

Zou { [T trtigy (wi)t7) = H*” /(@tﬂpg(BOl), @t Wa(B™)),, e =B DR (30)
=1

For ¥ € W(X,x,R,k), the map B — @t,V,(B) € V. is a group H non-abelian theta
function belonging to W(X,x,r, k) (the normalization of the Killing forms of G and H may

differ, hence the replacement k — k). Denote by T' the corresponding map from W(X,x, R, k)
to W(X,x,r,k). Eq.(30) may be rewritten as

Zoy ([T trtigy (x)t7) = HY (TUs,TV,) = T T°T, (31)

=1

or choosing a basis (¢)) of W(Z,X,r,l;),

Zoyu (Lt tign, (e)t7) = HP T b, T (32)

=1

where (T7) is the ("branching”) matrix of the linear map 7 in bases (¥,), (¥) and hy, =
(ta, t,). Since the above formula holds also for the partition function itself, it follows that the
calculation of the coset theory correlation functions (29) reduces to that of the scalar products

of group & and group H non-abelian theta functions, both given by explicit, finite-dimensional
integrals.

Among the simplest examples of the coset theories is the case with G = SU; x SU, with
level (k,1) (for product groups, the levels may be taken independently for each group) and
with H being the diagonal SU, subgroup. The resulting theories coincide with the unitary

"minimal” series of CF'T’s with (Virasoro) central charges ¢ =1 — m first considered by

Belavin-Polyakov-Zamolodchikov. The Hilbert spaces of these theories are built from the unitary
heighest weight representations of the Virasoro algebras with 0 < ¢ < 1 discussed in Lecture

2. The simpliest one of them with & = 1 and ¢ = % is believed to describe the continuum
limit of the Ising model at critical temperature or the scaling limit of the massless ¢3 theory. In
particular, in the continuum limit the spins in the critical Ising model are represented by fields
trg,, (x) where g takes values in the first SU,. The corresponding correlation functions may

be computed as above. One obtains this way for the 4-point function an explicit expression in
terms of hypergeometric functions.

Similar coset theories but at level (k,2) give rise to the supersymmetric N = 1 minimal
unitary series of CFT’s, the simplest one with k = 1 (appearing also at k = 2 in the previous
series) corresponds to the so called 3-critical Ising model.

The G/H coset theory with H = G is a prototype of a two-dimensional topological field
theory. As follows from eq. (31), the correlation functions of fields trg,(x) are equal to the
dimension of spaces W (X, x, R, k), normalized by the dimension of W(X,0,0, k) (and are given
by the Verlinde formula). In particular, they do not depend on the position of the insertion
points.
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6. WZW factory

As we have seen above, the coset construction allows to obtain new soluble CFT’s from the
WZW models. Let us briefly discuss further refinements which permit a chain production of
conformal models whose partition functions and correlation functions may be computed exactly,
at least in principle. The most interesting cases of such models correspond to situations when
two different constructions give rise to the same CFT, as in T-duality, mirror symmetry and
other numerous instances.

1. If the group G is not simply connected, the original definition (4) of the action of the
WZW model requires a modification. The result is possible further restrictions on the levels and
the appearance, in some cases, of different quantizations of the same classical theory (”#-vacua”
or "discrete torsion”). The models are still exactly soluble although only the partition functions
and the correlations of "untwisted” fields have been worked out in detail for general G.

2. Let H C G and Z C H be a subgroup of the center 7, of G. Let P_, be a principal
H'-bundle where H' = H/Z and @, = P, x,, G be the G-bundle associated to P, via the
H/

adjoint action of H' on G. For appropriate k, and for a section ¢ of (). and a connection
B on P, one may define the amplitude e #%@B)  The (unnormalized) correlation functions of
the coset (G/H'-model may then be obtained by integrating gauge invariant insertions, weighted
with e=#55) over g and B and summing the result over inequivalent H’-bundles P, . Hence,
for given H C (¢, there are as many coset theories as subgroups of HN Z_ (some of them might
have a non-unique vacuum).

3. If H is a discrete subgroup of G, then P, carries a unique canonical flat connection and is
given by a conjugation class of homomorphisms of the fundamental group of is ¥ into H. The
construction from the preceding point gives rise to the orbifolds of the WZW models.

4. Supersymmetric WZW models. One adds to the G-valued field g the (anticommuting)

Majorana Fermi fields i, ¢ in the adjoint representation (i.e. sections of L ® g and L ® g,
respectively, where L is a square root of the canonical bundle of ¥) and one considers the action

S(g, 0,0, A) = kS(g,A) = 2 [ tr (0(8 + 1A%, D)o + B0 + 4", ])) (33)

with the external, group G gauge field A. The fermionic part of the theory is free and the
complete theory may be easily solved.

5. Supersymmetric coset models. The action is as in eq. (33) except that A is replaced by

a group H gauge field B and the Majorana fields v, > are taken with values in g/h rather than
in g. Both the supersymmetric WZW models and the supersymmetric coset models possess the
N =1 superconformal symmetry.

6. N = 2 coset models. If G/H is a Kahler symmetric space then the supersymmetric
G//H coset model possesses the N = 2 superconformal symmetry including the U(1) loop group
symmetry. The simplest examples are provided by the SU(2)/U(1) models which, at level k,
give rise to the minimal N = 2 superconformal theory with central charge ¢ = %

7. Orbifods of tensor products of conformal field theories may give rise to essentially new
models. The famous example are the (Z/5Z)> orbifolds of product of five & = 3 minimal N = 2
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superconformal models. Two different orbifolds may give equivalent conformal sigma models
corresponding to a mirror pair of Calabi-Yau quintic targets.

8. The theories with U(1) loop group symmetries like the N = 2 supersymmetric coset models
may be twisted by considering their fields as taking values in bundles associated with the sphere
subbundle of the spin bundle I and coupled to the spin connection. Such twisting of N = 2
superconformal models may be done in two essentially different ways (A- and B-twist) and it
produces topological field theories. The genus 0 correlations of the A-twisted N = 2 sigma
models compute the quantum cohomology of the target.

9. For non-compact groups G, the WZW action S(g) is not bounded below but one may
try to stabilize the Euclidean functional integral by analytic continuation or/and coset-type
gauging of subgroups of . Such stabilization procedures may however destroy the physical
positivity (Hilbert-space picture) of the theory. The best studied models of the non-compact
type correspond to finite coverings of S L2(R) with the U(1) subgroup twisted and the nilpotent
subgroup gauged away (the construction of minimal models a la Drinfeld-Sokolov), the SLy(R)
generalizations thereof, the Liouville and Toda theories and the SLs(R)/U(1) black hole model.
Our knowledge of non-compact WZW models is certainly much less complete than that of the
compact case (note that this is true also on the level of quantum mechanics where we know
everything about harmonic analysis of compact Lie groups but the harmonic analysis of non-
compact ones has still open problems).
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