
LECTURESonCONFORMAL FIELD THEORYKrzysztof Gaw�edzkiC.N.R.S., I.H.E.S., 91440 Bures-sur-Yvette, FranceIntroductionOver the last decade and a half, conformal �eld theory (CFT) has been one of the main domainsof interaction between theoretical physics and mathematics. The present review is designed asan introduction to the subject aimed at mathematicians. Its scope is limited to certain simpleaspects of the theory of conformally invariant quantum �elds in two space-time dimensions. Thetwo-dimensional CFT experienced an explosive developement following the seminal 1984 paperof Belavin, Polyakov and Zamolodchikov, although many of its concepts were introduced beforethat date. It still plays a very important role in numerous recent developments concerninghigher-dimensional quantum �elds. From the mathematical point of view, CFT may be de�nedas a study of Virasoro algebra (or algebras containing it), of its representations and of theirintertwiners. The theory de�es, however, such narrowing de�nitions which obstruct the muchwider view that it opens and into which we o�er here only some glimpses. In four lectures wediscuss:- conformal free �elds,- axiomatic approach to conformal �eld theory,- perturbative analysis of two-dimensional sigma models,- exact solutions of the Wess-Zumino-Witten and coset theories.To signal the omissions, whose full list would be much longer, let us point out that almost nomention is made of lattice models whose critical points are described by CFT's, of the perturbativeapproach to string theory, based on the two-dimensional CFT, of superconformal theories. Themodest goal of these lectures is to make the physical literature on CFT, both the original papersand the textbooks (e.g. \Conformal Field Theory" by Di Francesco-Mathieu-S�en�echal, Springer1996) more accessible to mathematicians. 1



Lecture 1. Simple functional integralsContents :1. What is quantum �eld theory (for me)?2. Euclidean free �eld and Gaussian functional integrals3. Feynman-Kac formula4. Massless free �eld with values in S1: the partition functions5. Toroidal \compacti�cations" of 2-dim. free �elds, baby T-duality and mirror symmetry6. Compacti�ed 2d free �elds: the correlators1. What is quantum �eld theory?Field theory deals with maps � between space � (the space-time) and spaceM (the target). Thesespaces come with additional structure, e.g. they may be Riemannian or pseudo-Riemannianmanifolds. The case of Minkowski signature on � is the one of �eld theory proper whereas theEuclidean signature corresponds to static (equilibrium) situations. In many cases, however, (forexample for at �) the passage from one signature to the other may be obtained by analyticcontinuation in the time variable (\Wick rotation" t 7! it) and both situations may be studiedinterchangeably, the Euclidean setup being sometimes more convenient.An important datum of the �eld theory is the action, a local functional of �. For example,one may consider S(�) = R� jd�j2dv (where the metric structures on � and M and a volume on� must be used to give sense to the right hand side).In the classical �eld theory one studies the extrema of the action functional i.e. maps �clsatisfying �S(�cl) = 0 :The extremality condition is a PDE for �cl, e.g. the wave or Laplace equation or the Maxwell,Yang-Mills, or Einstein ones, to mention only the most famous cases. One should bear in mindthat non-linear PDE's is a complicated subject where our ignorance exceeds our knowledge.Following an extremely intuitive reformulation of quantum �eld theory (QFT) by Feynman,the latter consists in studying functional integralsZMap(�;M) F (�) e� 1h� S(�) D� (1)where F (�) is a functional of � (an \insertion") and D� stands for a local product Qx2� d�(�(x))of measures on M . The above expression is formal and one of the aims of these lectures is toshow that it may be given sense and even calculated in some simple situations. More generally,however, the functional integral written above should be considered as an approximate expressionfor structures which live their own lives, di�erent and in some aspects more interesting then the2



lives of the objects whose symbols appear in the integral. Still, although formal and approximate,the functional integral language proved extremely useful in studying the QFT structures. It alsomade the relation of QFT to classical �eld theory quite intuitive: unlike in the case of the latter,all maps � (called often but somewhat abusively classical �eld con�gurations or classical �elds)give contributions to QFT, each with the probability amplitude p(�) � e� 1h� S(�) (in Minkowskicase, these are not probabilities since S(�) should be taken imaginary, but never mind). Theclassical physics corresponds to the stationary phase or saddle point approximation in which allcontributions to the integral (1) but those of the stationary points of S are discarded. Such anapproximation is justi�ed when the Planck constant h� may be treated as very small (as in theusual macro-scale physics but not for example in superuid helium).It should be stressed that, in general, the relation of quantum to classical is not one to one (asthe formulation (1) could suggest) and not even many to many, except for special situations, e.g.with lots of symmetries on both levels. Such situations are of special interest for mathematiciansbecause they allow to reduce QFT to the more familiar classical structures. The QFT approachallowed in many such cases new insights, recall, for example, the use of topological or quasi-topological �eld theories as factories of invariants. This motivates the utilitarian interest ofmathematicians in QFT. The very di�culty in making sense out of the integrals (1) is at theorigin of a deeper source of mathematical interest of QFT, namely in the mathematics of thenew structures carried by QFT. The mathematical structures in integrable or conformal two-dimensional �eld theories or in four-dimensional SUSY gauge theories just emerging provide herethe examples (not speaking about mathematics which promises to underlie the panoply of stringtheory dualities).It may be good to remind briey what do physicists use QFT for.i/. It provides a relativistic theory of interactions of elementary particles. And so Quan-tum Electrodynamics (QED) describes interactions of electrons, their anti-particles positronsand photons, the Glashow-Weinberg-Salam theory of electro-weak interactions describes at thesame time the beta decays and QED, Quantum Chromodynamics (QCD) deals with the stronginteractions (quarks forming nucleons). The latter two build what is called the standard modelof particle physics.ii/. QFT in its Euclidean version describes critical phenomena at the 2nd order phase tran-sition points like that in H2O at temperature Tc �= 374�C and pressure pc �= 2:2 � 107 pascals(� 20atm), or that in Fe at Tc �= 770�C or in the Ising model at its critical temperature.The criticality is characterized by slow decay with the distance of statistical correlations whoseasymptotics is described by Euclidean QFT.iii/. In string theory aiming at uni�cation of gravity with the other interactions (from pointi/.) two-dimensional conformal QFT provides the classical (and perturbative) solutions and thethe quantum string theory proper (still to be non-perturbatively de�ned) may be considered asa deformation of quantum �eld theory where particles are replaced by strings (the typical size ofthe string being the deformation parameter).iv/. Finally, many QFT techniques are used in the theory of non-relativistic condensedmatter.2. Euclidean free �eld and Gaussian functional integralsIn the rest of this lecture we shall describe how one may give sense to functional integral (1) inthe simplest case of free �eld. This is the case where the space of maps Map(�;M) is a vectorspace (inheriting the linear structure from that of M) or is a union of a�ne spaces and where3



the action functional S is quadratic. The corresponding functional integral is Gaussian plus, inthe 2nd case, an easy but interesting decoration (in theta functions). The adjective \free" refersto the absence of particle interactions which is related to linearity of the classical equations.Let (�; ) be a Riemannian, (d+1)-dimensional, oriented, compact manifold and letM = R(we consider the Euclidean case). The action functional is taken asS(�) = �4� Z� (jd�j2 +m2�2)dv � 12 (�; G�1�)L2 (2)where dv is the Riemannian volume and the operator �2�G = (�� + m2)�1 is often called the(Euclidean) propagator of free �eld of mass m.The simplest functional integral of the type (1) is the one with trivial insertion F = 1 givingwhat is called \statistical sum" or \partition function" and denoted traditionally by Z:Z = ZMap(�;R) e�S(�) D� = ZMap(�;R) e� 12 (�;G�1�) D�(we have put h� = 1 for simplicity). The names come from statistical physics: the integral sumsthe probabilities (probability amplitudes) p(�) of all microscopic states � of the system. Thespace Map(�;R) may be considered as the Hilbert space with the L2 scalar product using themetric volume dv on �. Were this space �nite dimensional, the integral would giveZ = (det G) 12if we normalizedD� = Qi d�ip2� where (�i) are any orthonormal coordinates on the Hilbert space ofmaps. It is sensible to maintain the above formula as a de�nition of the formal functional integralfor the partition function even in the in�nite-dimensional case. It is necessary then to give sense tothe determinant of the positive operator G whose (discrete) eigenvalues �n, n = 1; 2; : : :, behaveas O(n�2=(d+1)). A convenient (but nonunique) way to do it is by the zeta-function regularizationde�ning det G = e��0G(0)where �G(s), given as Pn ��sn for Res < �d+12 , extends to a meromorphic function analytic inthe vicinity of zero. We shall stick to this de�nition of in�nite determinants throughout thepresent lectures.The next functional integrals we may like to compute are the ones for the correlations functionsdepending on a sequence (xi)ni=1 of points in �h�(x1) � � � �(xn)i � RMap(�;R) �(x1) � � � �(xn) e�S(�) D�RMap(�;R) e�S(�) D� :4



Again mimicking the case of �nite-dimensional Gaussian integrals, we may de�ne the formalfunctional integral on the right hand side by settingh�(x1) � � � �(xn)i = 8>>>>>>><>>>>>>>: 0 for n odd;G(x1; x2) for n = 2;G(x1; x2)G(x3; x4) +G(x1; x3)G(x2; x4)+G(x1; x4)G(x2; x3) for n = 4;Ppairingsf(i+;i�)g Q(i+;i�)G(xi+ ; xi�) for n evenwhereG(x; y) denotes the kernel of operator G which is smooth for x 6= y and exhibits a coincidingpoints singularity � ln dist(x; y) for d = 1 and � dist(x; y)�d+1 for d > 1. Such a de�nition ofthe correlation functions is additionally substantiated by the fact that there exists a probabilitymeasure d�G on the space of distributions D0(�) such thath�(x1) � � � �(xn)i = ZD0(�) �(x1) � � � �(xn) d�G(�)where the equality is understood in the sense of distributions. �(x) may be then considered as arandom distribution.3. Feynman-Kac formulaSome people in the audience may wonder what it all has to do with Minkowski space �eld theoryinvolving Hilbert space H, quantum Hamiltonian H and quantum �eld operators acting in Hsince the (Euclidean) functional integral scheme has led us to entirely commutative structuresas the Euclidean random distributions �(x) which may, at most, be considered as a distributionwith values in commuting multiplication operators acting in L2(D0(�); d�G). The relation of thetwo schemes is provided by the so called Feynman-Kac formula. Let us start from a simplequantum mechanical example.Example 1. d = 0, � = [0; L] with the periodic identi�cation of the ends and the standardmetric. In this case, d�G is supported by the space of continuous functions Cper([0; L]) and isessentially a version of the Wiener measure. More exactly, it di�ers from the latter by the density� e��m22� R L0 �(x)2. Suppose that 0 � x1 � x2 � : : : � xn � L. ThenZCper([0;L]) �(x1) � � � �(xn) d�G(�) = tr e�x1H' e(x1�x2)H' � � � ' e(xn�L)Htr e�LH (3)whereH = � �� d2d'2 + �m24� '2 � m2 = m��r ��m dd' + r�m4� '��r ��m dd' + r�m4� '� � ma�ais the Hamiltonian of a harmonic oscillator acting in L2(R; d'). a and its adjoint a� satisfy thecanonical commutation relation [a; a�] = 1 :5



The ground state 
 of H is proportional to e��m4� '2 and corresponds to the zero eigenvalue. 
 isannihilated by a and the higher H-eigenstates are obtained by aplying powers of a� to 
, eacha� raising energy (i.e. eigenvalue of H) by m (a is called the annihilation and a� the creationoperator). Hence the spectrum of H is f0;m; 2m; : : :g = mZ+. With the use of the orthonormalbasis ( 1pn!(a�)n
)1n=1 composed, up to normalizations, from the Hermite polynomialsHn(q�m� ')times 
, L2(R; d') may be identi�ed with (the Hilbert-space completion of) the symmetricalgebra SC (the bosonic Fock space over C). Note that' = r ��m (a+ a�) :Problem 1. Consider formula (3) for the 2-point function.(a). Use the Fourier transform to write the left hand side. Show that its L!1 limitG1(x1; x2)exists.(b). Prove that for x1; : : : ; xn > 0 and complex numbers �1; : : : ; �n,nXk;l=1 ��k�lG1(�xk; xl) � 0: (4)(c). What is the L!1 limit of the right hand side of Eq. (3) for n = 2?(d). Show that both sides of Eq. (3) with n = 2 coincide at L =1. Prove (b) using this result.(e). Prove relation (3) for n = 2 and �nite L.It may be more natural to read the Feynman-Kac formula from the right to left. e�xH(�; �0) isnothing else but the transition probability to pass from � to �0 in time x which may be usedto de�ne the Markov process �(x) with the measure on the space of continuous realizationscoinciding with d�G .Example 2. d > 0, � = [0; L]d+1 with periodic identi�cations. Now d�G is carried by genuinelydistributional �'s. Let (xi = (x0i ;xi))ni=1 be s. t. 0 < x01 < x02 < : : : < x0n < L. The Feynman-Kacformula now takes the formZD0([0;L]d+1) �(x1) � � � �(xn) d�G(�) = tr e�x01H'(x1) e(x01�x02)H'(x2) � � � '(xn) e(x0n�L)Htr e�LH (5)where the quantum Hamiltonian H is a positive self-adjoint operator in the Hilbert space H, atensor product of an in�nite number of harmonic oscillators, one for each Fourier mode 'k of theclassical time zero �eld 'k = R[0;L]d eik�x�(0;x)dx :H = O�k2 2�L Zd L2(C; d2'k) :The annihilation operators ak = r�Ld�k0 dd'k + r �k04�Ld '�k ;6



where k0 = pk2 +m2, and the creation operators a�k adjoint to them satisfy the canonicalcommutation relations [ak; a�k0 ] = �k;k0with all the other commutators vanishing. The quantum (time zero) �eld is'(x) = Xk r ��k0Ld e�ik�x (a�k + a �k) :The Hamiltonian H = Xk k0 a�kakhas 
 � ePk �k04�Ld j'kj2 as the ground state annihilated by all ak. The spectrum of H is Pk k0Z+.There are three natural ways to look at the Hilbert space H:i/. H is an in�nite tensor product of oscillator spaces L2(C; d2'k) (how should it be de�ned?);ii/. H is the Hilbert space completion of the symmetric algebra S(l2(2�L Zd)) �= S(L2([0; L]d));this is the Fock space picture;iii/. H is a space of functionals of variables 'k or of the time zero classical �eld �(0;x)obtained by acting by creation operators a�k on the vacuum functional 
.One may introduce the (Minkowski) time dependence of the quantum �eld by de�ning'(t;x) = eitH '(x) e�itH :Problem 2. Show that'(t;x) = Xk r ��k0Ld (e�itk0+ik�x ak + eitk0�ik�x a �k ) : (6)The in�nite volume limit L ! 1 of the formulae for H and '(t;x) may be easily taken ifwe introduce operators a(k) = Ld=2ak. In the limit one obtains the operator-valued distributionsa(k) and their adjoints a�(k) acting in the Fock space S(L2(Rd; d�k)) (d�k � dk=(2�)d) andsatisfying the commutation relations[a(k); a�(k0)] = (2�)d �(k� k0) :By identifying L2(Rd; d�k) (by multiplication by p2k0) with the space of functions on the uppermass hyperboloid f(k0;k)g square-integrable with the Lorentz-invariant measure d�k2k0 , one obtainsthe Minkowski scalar free �eld of mass m constructed in more abstract and explicitly Poincare-covariant way in David Kazhdan's lectures (check it!).4. Massless free �eld with values in S1 7



Let us pass to the next case where (�; ) is again a general compact (d + 1)-dimensionalmanifold, M = R=2�Z �= S1 and the action functional is that of the massless free �eld:S(�) = �4� R� jd�j2dv (note that � has a natural interpretation of square of the radius � of thecircle if we rewrite the classical action as 14� R jd�j2dv but use the metric �2d�2 on the target).This is the case of a conformal (invariant) �eld theory with the conformal group acting (pro-jectively) in the corresponding Hilbert space of states, transforming covariantly �eld operators.We shall get there slowly discussing in more detail the d = 1 case where the conformal groupis in�nite-dimensional, essentially = Diff(S1) � Diff(S1). Let us start with an elementarytreatment of the functional-integral.How should we view the space of maps from � to S1? A convenient way is to de�neMap(�;R=2�Z) = [�2Hom(�1(�);2�Z)Map(~�;R)� =2�Zwhere �� 2 Map(~�;R)� is a a function on the universal cover ~� of � equivariant with respectto the action of the fundamental group:��(ax) = ��(x) + �(a) for a 2 �1(�) :Note that this de�nition makes sense for maps of arbitrary class (smooth continuous or distribu-tional). Hom(�1(�); 2�Z) �= H1(�; 2�Z) with � given by the periods of � 2 H1(�; 2�Z). Each�� 2Map� may be uniquely decomposed according to�� = Z xx0 �h +  � �h +  (7)where �h is the harmonic representative of � 2 H1 corresponding to �, x0 is the base point of �and  is a univalued function on �. For the free �eld action we obtainS(��) = �4� k�hk2L2 + �4� ( ;�� )L2(there is no mixed term, why?). This suggests the following de�nition of the functional integralfor the partition function of the system:Z = ZMap(�;S1) e�S(�) D� = X�2H1(�;2�Z) e� �4� k�hk2L2 ZMap(�;R) e� �4� ( ;�� )L2 D = X�2H1(�;2�Z) e� �4� k�hk2L2  2� vol�det0(� �2��)!1=2 (8)where in det0 the zero mode should be omitted (it contributes the factor p2� vol�, where vol� =R� dv, to the functional integral, why?).Example 3. d = 0, � = [0; L]per. In this case, �h = 2�L ndx and an easy calculation (seeProblem 4 below) shows that det0(� �2� d2dx2 ) = 2�L2=� :8



Hence the d = 0 partition functionZ = Xn2Z e���L�1n2  2�Ldet0(� �2� d2dx2 )!1=2 =Poissonresummation Xn2Z e����1Ln2 = tr e�LHwhere now H = � �� d2d'2 is the operator acting in L2(R=2�Z; d') with the eigenvectors ein'; n 2Z, corresponding to eigenvalues �n2=�.Problem 3. Prove for 0 � x1 � : : : � xn � L and qi 2 Z the Feynman-Kac formulaZ nYi=i eiqi�(xi) e� �4� R L0 (d�=dx)2 D� = tr ex1H eiq1' e(x1�x2)H eiq2' � � � eiqn' e(xn�L)Hwhere the functional integral over Map([0; L]; S1) on the left hand side is computed as the onefor the partition function Z treated above. Infer that the left hand side may be also expressedas the expectation heiq1�(x1) � � � eiqn�(xn)i w. r. t. the Wiener measure on the periodic paths onS1 constructed from the transition probabilities e�xH(';'0).Let us discuss in greater detail the case d = 1 when (�; ) is a Riemann surface of genush� with a �xed metric  (inducing the complex structure of �). Let us chose a marking of �(a symplectic bases (ai; bj) h�i;j=1 of H1(�;Z)) with the corresponding basis (!i)h�i=1 of holomorphic1,0-forms, Rai !j = �ij , Rbi !j = � ij . The imaginary part �2 of the period matrix � = (� ij) ispositive. The equation �h = �i (��m+ n)t� �12 ! + c:c:for m;n 2 Zg gives the harmonic forms in H1(�; 2�Z) (with ai-periods �2�mi and bj-periods2�nj). k�hk2L2 = (2�)2 (��m+ n)t� �12 (�m+ n)and the sum over � in eq. (8) may be done explicitly. After Poisson resummation over n, oneobtains the following resultX�2H1(�;2�Z) e� �4� k�hk2L2 = ��h�=2 (det �2)1=2 #Q� (�; �� ) (9)where the \theta function" #Q� is de�ned as follows. LetEs be the s-dimensional Euclidean space.Let Q be a lattice in Es+;s� = Es+ �Es� considered with the inde�nite metric j � j 2Es+ � j � j 2Es� .Then #Q(�; �� ) = X(q+;q�)2Qh� e�i (q+;� q+)� �i (q�;�� q�) :where the decomposition q = (q+; q�) is according to that of Es+;s�. Above,Q� = f ( �1=2m+��1=2np2 ; �1=2m���1=2np2 ) j m;n 2 Z g � R�R :9



Inserting the relation (9) into eq. (8), we obtainZ � Z� = e(�6 ln 2�+11 ln�=2)(h��1) #Q� (�; ��)�vol� det �2det0(��) �1=2 :From eq. (8) it is obvious that the right hand side is marking-independent. Technically, this isdue to the fact that, in the inde�nite scalar product, the lattice Q� is even (scalar-products areintegers, scalar squares are even) and self-dual.We may discard from Z any factor of the form (const:)h��1 by the addition to the action of aterm proportional to the integral of the scalar curvature r of � since R� rdv = 4�(1�h�). Doingthat we discover a somewhat miraculous equalityZ� = Z1=� ; (10)a consequence of the obvious identity Q� = Q1=� . More directly, identity (10) follows from thePoisson resummation formula applied to the left hand side of eq. (9) and the fact that the latticeH1(�; 2�Z) with the L2 scalar product is isomorphic to its dual (the isomorphism is induced bythe intersection form). Eq. (10) is the simplest manifestation of the so called T -duality whichstates that the 1 + 1-dimensional massless free �elds with values in the circles of radius � and ofradius ��1 are indistinguishable. This identi�cation of inverse radia of free �eld compacti�cationhas a deep meaning in the string theory context and we shall return to it in a later discussion.On the genus 1 curve T� = C=(Z + �Z) with � in the upper half plane and the standardmetric, det0(��) = � 22 j�(� )j4where �(� ) = e�i�=12 1Qn=1(1 � e2�in� ) is the Dedekind eta function.Problem 4 (a relatively complex calculation, going back to Kronecker 1890).(a). Using the identity ��s = �(s)�1 R10 ts�1 e��tdt show that �(0) = � 12 annd �(�1) = � 112where � is the Riemann zeta function �(s) = 1Pn=1 n�s (for Res > 1, analytically continuedelsewhere).(b). For � = �1 + i�2 with �i real, �2 > 0 show using the identity from (a) and the Poissonresummation that for Res su�ciently large1Xn=�1 j� + nj�2s = p��(s) 0@Xn6=0 e2�in�1 Z 10 ts�3=2 e��22 t��2n2=t dt + ��2s+12 �(s � 1=2)1A :Note that the right hand side is analytic in s around s = 0. Using (easy) relations �(s)�1 =s+O(s2) ; �(� 12 ) = �2p� and R10 t�3=2 e�x(t+t�1) dt = p�x�1=2 e�2x obtain:dds ����s=0Xn j� + nj�2s = � ln j1� qj2 � 2��210



with the standard notation q � e2�i� .(c). By taking � ! 0 in the last formula show that � 0(0) = � 12 ln(2�) .(d). Prove that for the periodic b.c. operator d2dx2 on [0; L] the zeta-regularized determinantdet0(� �2� d2dx2 ) = 2�L2=� :(e). Show that the spectrum of the Laplacian �� on the torus C=(Z + �Z) in the metric jdzj2is given by �m;n = �(2��2 )2 j�m+ nj2 for n;m 2 Z.(f). Proceeding as in (b) decomposeX(m;n)6=(0;0) j�m+ nj�2s = Xm6=0; n j�m+ nj�2s + 2�(2s)= p��(s) 0@ Xm;n6=0 e2�imn�1 Z 10 ts�3=2 e�m2�22 t��2n2=t dt + Xm6=0m�2s+1 ��2s+12 �(s� 1=2)1A + 2�(2s)and show that (after analytic continuation)���0� (s) � X(m;n)6=(0;0)(��m;n)�s = �1 � 2s ln j 1Ym=1(1 � qm)j2 � 2s ln �2 + 13 � �2s :Infer that ���0� (0) = �1 ; � 0��0� (0) = �2 ln j 1Ym=1(1� qm)j2 � 2 ln �2 + 13 � �2 ;and that det0(���) = � 22 j�(� )j4where the Dedekind eta function �(� ) = q1=24 1Qn=1(1 � qn) .Hence in the genus 1 case,Z � Z�(� ) = #Q� (�; �� ) j�(� )j�2 = Z1=�(� ) : (11)The marking independence (together with the independence of Z� on the normalization of theat metric on T� , see below) implies that Z(� ) is a modular invariant functionZ�(� ) = Z�(a�+bc�+d )for ( a bc d ) 2 SL2(Z) . 11



5. Toroidal compacti�cations: the partition functionsThe above discussions may be easily generalized to the case of \toroidal compacti�cations" i.e. tothe case of massless free �eld on (�; ) with values in the N -dimensional torus TN = (R=2�Z)N .Fix a constant metric g = Pij gij d�id�j and a constant 2-form ! = Pij bijd�i ^ d�j on TN andde�ne the classical action of the �eld � : �! TN asS(�) = 14� (kd�k2L2 + i Z� ��!) : (12)Applying the same method as before (do it!) results in the formulaZ � Zd = #Qd (�; �� ) �vol� det �2det0(��) �N=2 = Zd�1(T -duality again!) where d = (dij = gij + bij) and the latticeQd = Qd�1 = f ( dm+np2 ; dtm�np2 ) j m;n 2 ZN g � RN �RNis an even self-dual lattice in RN �RN with the inde�nite scalar product j(x; y)j2 = (x; g�1x)�(y; g�1y). At genus 1Z � Zd(� ) = #Qd (�; �� ) j�(� )j�2N = Zd�1(� ) = Zd(a�+bc�+d ) :Example 4. Let T be the Cartan torus of a simply-laced, simple, simply-connected Lie group(the compact form of the A; D; E groups). By spanning the Lie algebra of T by the coroots�_i , we may identify T with TN where N is the rank of the group. Let gij = 12 tr�_i �_j where tris the Killing form normalized so that gii = 1. We may write2gij = dij + djifor some integers dij and set 2bij = dij � djiso that dij = gij + bij. The corresponding action of the toroidal compacti�cation coincides (mod2�i) with the action of the WZW model with �elds taking values in the corresponding simplegroup (the � R ��! term is the remnant of the topological WZ term). De�ning for p_ 2 (P_)h� ,where P_ is the coweight lattice dual to the root lattice,#Q_;p_ (� ) = Xq_ 2 (Q_)h� e�i tr (p_+q_)t; � (p_+q_)one obtains #Qb(�; �� ) = X[p_]2(P_=Q_)h� j#Q_;p_ (� )j2 :12



In particular at genus 1.Zd(� ) = X[p_]2P_=Q_ ����#Q_;p_ (� )�(� )N ����2 = X[p_]2P_=Q_ jch1[p_](� )j2 (13)where ch1[p_](� ) = #Q_;p_ (�)�(�)N runs through the characters of the level 1 representations of thecorresponding Kac-Moody algebra. In particular, for the E8 case P_ = Q_ and the partitionfunction is the absolute value squared of ch10(� ) which is a cubic root of the modular invariantfunction j(� ). In general, the right hand side of eq. (13) coincides with the genus 1 partitionfunction of the level 1 WZW model. This remains true for higher genera and for the completeCFT's which is another miraculous coincidence of �eld theories with �elds taking values in quitedi�erent target spaces (e.g. the SU(2) WZW model at level 1 is equivalent to the free �eld withvalues in S1 of radius 1).The fact that the toroidal partition function (13) is a �nite sesqui-linear combination ofexpressions holomorphic in � is a characteristic feature of rational conformal theories.Problem 5. Show that the free �eld compacti�ed on a circle of rational radius squared (= �)is rational in the above sense.For free �elds with values in the Cartan tori of simply laced groups described above, the generalpartition functions are hermitian squares with respect to Quillen-like metric of holomorphicsections of projectively at vector bundles over the moduli spaces of curves. We shall return tothese issues during a more detailed discussion of the WZW models.Example 5. Consider the toroidal compacti�cation to T 2 equipped with the complex structureinduced by the complex variable  = �1+T�2 (T is in the upper half plane) and with a constantK�ahler metric g = (R2=T2)d d � with R2 > 0 and a constant 2-form ! = i(R1=T2)d ^ d � . SetR = R1 + iR2. The partition function of the corresponding free �eld isZ � ZR;T = #QR;T (�; �� ) �vol� det �2det0(��) �where QR;T = f ( Rm1+TRm2+T n1�n2p2R2T2 ; �Rm1+T �Rm2+T n1�n2p2R2T2 ) j mi; ni 2 Z g � C �Cwith the inde�nite quadratic form j(z1; z2)j2 = jz1j2 � jz2j2. Note that QT:R may be obtainedfrom QR;T by complex conjugation on the second C. We infer thatZR;T = ZT;R (14)which is the simplest instance ofmirror symmetry claiming identity of CFT's with �elds in twodi�erent Calabi-Yau manifolds with the role of modular parameters of complex and (polarized)K�ahler structures interchanged.Problem 6. Show that, besides the relation (14), the partition function satis�es the identitiesZR;T (� ) = ZR+1;T (� ) = ZR;T+1(� ) = ZR;�T�1(� ) = Z�R�1 ;�T�1(� ) ;13



which imply the separate SL2(Z) invariance in R and T .In general, the moduli space of N -dimensional toroidal compacti�cations is a double cosetO(N) �O(N)�O(RN �RN ; ( I0 0�I ) ; RN �RN ; (0I I0 ))�O(RN �RN ; (0I I0 ) jZ)(in a, hopefully, self-explanatory notations) which coincides with the moduli of even self-duallattices in R�R with the inde�nite scalar product.The action functional (12) of the (compacti�ed) two-dimensional massless free �eld uses onlythe conformal class of the metric  on �. The regularization of the free �eld determinantsreintroduces however the dependence on the conformal factor of the metric, an e�ect calledconformal anomaly. More exactly, one has���(x) �����=0 ln�det0(��)vol� � = � 112� r(x) ; (15)where r is the scalar curvature of �, or, denoting the metric dependence of the partition functionby the subscript, ���(x) �����=0 Ze� = N24� r(x) Z : (16)Problem 7. Prove the relation (15) using the identity ���(s) = �(s)�1 R10 ts�1 tr et� and theshort time expansion of the heat kernel of ��:et�(x; x) = 14�t + 112� r(x) + O(t)Problem 8. Prove that the in�nitesimal relation (16) is equivalent to the global oneZe� = e N96� (kd�k2L2 + 4R� �r dv) Z (17)6. Toroidal compacti�cations: the correlation functionsBesides the functional integrals for the partition functions, we would like to study the ones forthe correlation functions of the massless �eld with values in S1 of the typeZ nYi=1 eiqi�(xi) e� �4� R� jd�j2dv D�;for integer qi, see Problem 3 for the d = 0 example. This may be attempted by the same strategyas before by separating the �eld into the harmonic and univalued part, as in eq. (7), and thensumming over the �rst and integrating over the second. This gives the expressionX�2H1(�;2�Z) e� �4� k�hk2L2 + iPi qi�h(xi) Z e� �4� ( ;�� )L2 + iPi qi (xi) D :14



The sum overH1 may be expressed by partial Poisson resummation as an explicit theta-function.As for the functional integral, it may be formally performed by mimicking the �nite-dimensionalformulae:Z e� �4� ( ;�� )L2 + iPi qi (xi) D = �Pi qi;0 e �� Pni;j=1 qiqj G(xi;xj)  2� vol�det0(� �2��)!1=2where the Kronecker delta is contributed by the integral over the constant mode of  andG(x; y) = G(y; x) is a Green function of � satisfying �xG(x; y) = �(x; y) � 1vol� (the constantambiguity should drop out above due to the vanishing of P qi). The obvious problem with theabove formula is that G(x; y) = 12� ln dist(x; y) + �nitewhen y ! x so that G(x; x) is not de�ned. This is a standard problem with the short-distancesingularities due to distributional character of typical con�gurations in the Gaussian free �eldmeasure. A possible treatment is to renormalize the above expression by replacing the divergentcontributions by their �nite parts~G(x; x) = limy!x G(x; y) � 12� ln dist(x; y) (18)Upon division by the partition function, all this leads to a well de�ned renormalized expressionfor the correlation functions which we shall denote byh : eiq1�(x1) : � � � : eiqn�(xn) : iwhere the colons remind the renormalization procedure (which is closely related to the Wickordering discussed in Kazdan's lectures). The correlations depend on the \charges" qi and posi-tions xi but also on the metric  on � which is signaled by the subscript. In particular, on CP1with H1 = 0, one may take G(x; y) = 12� ln jz(x)� z(y)j in the standard complex variable andfor the metric g = e� dzd�z with a conformal factor e�, we obtain, setting zi � z(xi),h : eiq1�(x1) : � � � : eiqn�(xn) : i = �Pi qi;0 e�Pi q2i4� �(xi) Yi<j jzi � zj)j qiqj� : (19)The dependence on the conformal factor of the metric is solely due to the renormalization (18)and persists in general:h : eiq1�(x1) : � � � : eiqn�(xn) : ie� = e�Pi�i �(xi) h : eiq1�(x1) : � � � : eiqn�(xn) : i (20)where �i = q2i4� are the conformal dimensions of the (Euclidean) �elds : eiqi� : . The generalizationto the toroidal compacti�cations is straightforward. The conformal dimensions of �elds : eiq� :where q 2 ZN is now 14 (q; g�1q).The operator picture of the the free �eld compacti�ed on S1 is as follows. The quantumHibert space is H = L2(S1; d'0)Z 
F 
 ~F :15



Above L2(S1; d'0)Z is the in�nite sum of copies of L2(S1), each labeled by an integer (\windingnumber") w. The Fock space F is generated by applying operators �n, n = �1;�2; : : : ; to avector annihilated by �n with n = 1; 2; : : :,[�n; �m] = n�n;�m ; ��n = ��n ;and ~F is another copy of F . Let jp;wi denote the function 1p2� eipx in the wth copy ofL2(S1; d'0)Z. Integer p is the eigenvalue of the operator p0 = 1i dd'0 . H may be generatedby applying operators �n; ~�n with negative n to vectors jp;wi. The (multivalued) free �eldoperator (with time dependence) is given by'(t; x) = '0 + ��1p0t + wx + ip2� Xn6=0( �nn e�i(t+x)n � ~�nn e�i(t�x)n) :The relation to the m ! 0 limit of the massive free �eld on periodic interval of length L = 2�given by eq. (6) should be evident. Modulo the constant and winding modes, for n = 1; 2; : : : ;�n = �ipna�n ; ��n = ipna��n ; ~�n = ipnan ; ~��n = �ipna �n :The relabeling allows to separate the left-moving part (involving �n) from the right-moving one(containing ~�). The one-handed parts of '(t; x) are called chiral �elds (the zero modes can beseparated too). For the uncompacti�ed massless free �eld, the k = 0 mode contributes to theHamiltonian the term � �d2=d'20 acting on L2(R; d'0) which has continuous spectrum. Thecompacti�cation of the �eld (and consequently of its zero mode), restores the discreteness of theenergy spectrum.Hilbert space H carries a representation of two commuting copies of the Virasoro algebrawith generators Ln and ~Ln. Explicitly,Ln = 12 Xm2Z : �m�n�m :(creator to the left of annihilators) and similarly for ~Ln where we have set �0 = 1p2 (�1=2w +��1=2p0) and ~�0 = 1p2 (�1=2w���1=2p0) . The quantum Hamiltonian H = L0+ ~L0 . P = L0� ~L0generates the space translations. 
 = j0; 0i is the ground state of H (it is also annihilated byP ).Problem 9. Show that Ln's indeed satisfy the Virasoro algebra relations (with unit centralcharge) [Ln; Lm] = (n �m)Ln+m + 112 (n3 � n) �n;�m :Let us introduce the \vertex operators"Vq(t; x) = : eiq'(t;x) :16



de�ned as the (formal) power series in �n and ~�n reordered by putting the creation operatorswith negative n indices to the left of the annihilation operators corresponding to positive n andalso '0 operators to the left of p0.Problem 10. Using the operator relation eAeB = eBeAe[A;B] holding if [A;B] commutes withA and B, show that for t1 < t2 < � � � < tn,(
 ; Vq1(it1; x1) � � � Vqn(itn; xn)
) = �Pi qi;0 Yi<j jzi � zjj qiqj�where zj = e�tj+ixj . This, together with eq. (19), provides a spherical version of the Feynman-Kacformula.In variables z = ei(t+x) and ~z = ei(t�x), the commutation relations of Ln's and ~Ln's with thevertex operators take the form[Ln ; Vq(z; ~z)] = (n+ 1)� zn Vq(z; ~z) + zn+1 @z Vq(z; ~z) ; (21)[ ~Ln ; Vq(z; ~z)] = (n+ 1)� ~zn Vq(z; ~z) + ~zn+1 @~z Vq(z; ~z)where above � = q24� or � = 14 (q; g�1q) stands for the conformal dimension of the operator. Lateron, we shall see that these relations essentially follow from eq. (20) and the general covarianceof the corresponding correlation functions. In the professional jargon, the �elds satisfying suchcommutation relations are called primary Virasoro operators.On the level of the Hilbert space H � H�, T -duality becomes the unitary transformationUT : H� ! H1=� such thatUT ju;wi = (�1)uw jw; ui and UT �n = �nUT ; UT ~�n = � ~�nUT ;where, for u;w 2 Z, ju;wi denotes the function 1p2� eiu�0 in the w-component of L2(S1; d�0)Z .UT intertwines the action of the Virasoro algebras in H� and H1=� and maps the vertex operatorsin H� to new operators which should be considered on the equal footing with the original ones.Up to now, we have considered only S1-valued free �elds with periodic boundary conditions.In string theory aplications, one also considers �elds on space with boundaries and with �xedboundary conditions like the Neumann ones (open strings). Quantizing such �elds on spacewhich is an interval [0; �] (d = 1) one obtains quantum �eld'N(t; x) = '0 + ��1pt + ip2� Xn6=0( �Nnn e�i(t+x)n + �Nnn e�i(t�x)n)which may be realized in the subspace of the periodic b.c. Hilbert spaceH� generated by applyingoperators 1p2(�n � ~�n) = �Nn with negative n to vectors ju; 0i . The T -duality maps this �eldinto the one corresponding to the Dirichlet boundary conditions'D(t; x) = '0 + wx + ip2� Xn6=0( �Dnn e�i(t+x)n � �Dnn e�i(t�x)n)17



where '0 is �xed modulo �Z. 'D(t; x) acts in the subspace of H1=� generated by applying1p2(�n + ~�n) = �Dn to vectors j0; wi . In toroidal compacti�cations with more dimensions of thetarget, one may have mixed "D-brane"-type boundary conditions with some coordinates of the�eld �xed to prescribed values at the ends of the space-interval [0; �].Problem 11 (Massless fermions on Riemann surface).Let (�; ) be a Riemann surface. Spin structure on � may be identi�ed with the square rootL of the canonical bundle K = T �1;0(�) . A Dirac spinor 	 = ( ; ~ ) is an element of �(L� �L)where �L is the bundle complex conjugate to L. The conjugate spinor is �	 = (~�;�) 2 �(�L � L)and in the euclidean Dirac theory it should be treated as an independent �eld (� =  ; ~� = ~ for Majorana fermions). Denote by �@L the �@ operator of L and by @�L its complex conjugatewhich may be naturally identi�ed with �@ �L . The action is a function on the odd vector space�(�(L� �L)� �(�L � L)) : S(	; �	) = � 1� Z�(��@L + ~�@�L ~ )(note that the integrand is naturally a 2-form). Partition functions of the Dirac fermions aregiven by the formal Berezin integralZL = Z e�S(	;�	)D �	D	 = det(@�L) det(�@L) = det(�@ �L �@L) :The last determinant may be zeta-regularized giving a precise sense to the partition function ZLof the Dirac �eld on �.On the elliptic curve C=(Z + �Z) with � in the upper half-plane, the canonical bundle Kmay be trivialized by the section dz and spin structures correspond to the choice of periodic oranti-periodic boundary conditions under z! z + 1 and z ! z + � :L = pp; pa; ap; aa :(a). Show that the eigenvalues of �@ �L �@L are�m;n = ( ��2 )2 j�m+ nj2with m 2 Z ; n 2 Z for L = pp ;m 2 Z ; n 2 Z+ 12 for L = pa ;m 2 Z + 12 ; n 2 Z for L = ap ;m 2 Z + 12 ; n 2 Z+ 12 for L = aa:(b). Infer that Zpp(� ) = 0 :(c). Show that ��@ �pa �@pa(s) = 22s (���02� (s) � ���0� (s)) :18



Infer from Eq. (11) that Zpa(� ) = 4jq1=24 1Yn=1(1 + qn)j4 :In the Hilbert space picture Zpa(� ) = trHR
 ~HR qL0�1=24�q ~L0�1=24 : (22)The \Ramond sector" Hilbert space is HR 
 ~HR withHR = C2 
 �^( 1�n=1C)�
2 (23)and ~HR is another copy of HR . L0 acts in the �rst copy. It has eigenvalue 18 on C2 (the\Ramond ground states") and the occupied n th mode in the fermionic Fock space adds n to it.The periodic partition function isZpp(� ) = trHR
 ~HR (�1)F+ ~F qL0�1=24�q ~L0�1=24 � strHR
 ~HR qL0�1=24�q ~L0�1=24 (24)where (1; 0); (0; 1) 2 C2 correspond to the eigenvalues +1;�1 of (�1)F and each occupiedfermionic Fock space mode adds 1 to F . Zpp(� ) vanishes since modes with odd and even Ferminumbers are paired.(d). Show that��@ �ap �@ap(s) = 24s���0�=2 (s) � 22s���0� (s) and Zap(� ) = jq�1=48 1Yn=0(1� qn+1=2)j4 :The Hilbert space interpretation isZap(� ) = strHNS
 ~HNS qL0�1=24�q ~L0�1=24 (25)where the \Neveu-Schwarz sector" Hilbert space isHNS = �^( 1�n=0C)�
2 : (26)The \Neveu-Schwarz ground state" has eigenvalue zero of L0 and the n th occupied zero modecontributes (n+ 12) to it. The fermion number of the NS-ground state vanishes and each occupiedfermionic mode adds 1 to it.(e). Show that��@ �aa �@aa(s) = 22s��@ �pa �@pa(s)�����=2 � ��@ �pa �@pa(s)����� and Zaa(� ) = jq�1=48 1Yn=0(1 + qn+1=2)j4and that Zaa(� ) = trHNS
 ~HNS qL0�1=24�q ~L0�1=24 : (27)(f). Prove the modular properties:Zpa(� + 1) = Zpa(� ) ; Zap(� + 1) = Zaa(� ) ; Zaa(� + 1) = Zap(� ) ;Zpa(�1=� ) = Zap(� ) ; Zap(�1=� ) = Zpa(� ) ; Zaa(�1=� ) = Zaa(� ) :19



Problem 12 Bosonization.The spin structure is called even (odd) if the dimension of the kernel of �@L is even (odd). Denoteby �(L) the parity of L. The bosonization formula asserts that12 XL (�1) �(L) ZL = Ch��1Z1=2 (28)where on the right hand side we have the partition function of the bosonic free �eld with valuesin the circle of radius squared 12, C is a constant and h� the genus of the Riemann surface �.These equalities extend to correlations. For example, the fermionic �elds ( ~ )(x) correspondto bosonic �elds : ei�(x) : and (~��)(x) to : e�i�(x) : . What are their conformal weights? Proveidentity (28) for � = C=(Z+�Z) using the expression (11) for Z1=2(� ) and the classical productexpressions for the theta functions#(zj� ) � Xn2Z e�i�n2+2�inz = 1Yn=1(1� qn) (1 + e2�iz qn�1=2) (1 + e�2�iz qn�1=2) :What is the Hilbert space interpretation of the left hand side of Eq. (28) on the elliptic curve?In summary, by \calculating" the functional integrals for compacti�ed massless free �elds wehave constructed models of two-dimensional CFT speci�ed by giving the partition functions andcorrelation functions on general Riemann surfaces. In the next lecture(s), we shall examine theemerging CFT structure on a more abstract level.ReferencesA set of Gaussian integration formulae may be found e.g. in "Quantum Field Theory andCritical Phenomena" by J. Zinn-Justin (Sects. 1.1 and 1.2). See also Sects. 2.0-2.2 and 2.5for the discussion of of the path integral and the Feynman-Kac formula. Of course, for thelatter topic, "Quantum Mechanics and Path Integral" by Feynman-Hibbs is the physics classic.Rigorous theory of in�nite-dimensional Gaussian integrals may be found e.g. in the 4th volumeof Gelfand-Vilenkin. See also Simon's "The Euclidean P (�)2 Quantum Field Theory".The free �elds with values in S1 are discussed briey e.g. in the Ginspargs contributions to LesHouches 1988 School (Session XLIV "Fields, Strings and Critical Phenomena", eds. Brezin-Zinn-Justin) or in Drou�e-Itzykson: "Th�eorie Statistique des Champs", InterEditions 1989, (Sects. 3.2and 3.6). For the case of �elds with values in a torus see the paper by Narain-Sarmadi-Wittemin Nucl. Phys. B 279 (1987) p. 369 and for the case of complex torus read Vafa's contributionto "Essays on Mirror Symmetry", ed. S.-T. Yau, International Press, Hong Kong 1992.Free fermions and bosonization on a Riemann surface are discussed in the paper by Alvarez-Gaum�e-Bost-Moore-Nelson-Vafa in Commun. Math. Phys. 112 (1987), p. 503.20



Lecture 2. Axiomatic approaches to conformal �eld theoryContents :1. Conformal �eld theory data2. Conformal Ward identities3. Physical positivity and Hilbert space picture4. Virasoro algebra and its primary �elds5. Highest weight representations of V ir6. Segal's axioms and vertex operator algebras1. Conformal �eld theory dataIn the �rst lecture, we have discussed a functional-integral construction of the simplest modelsof CFT: the toroidal compacti�cations (of massless free �elds). In this lecture we shall presenta more general approach to CFT which, although not overly formalized, will be axiomatic inspirit using only the most general properties of the free �eld models. We shall assume that thebasic data of a CFT model specify for each compact Riemann surface (�; ) its partition functionZ > 0 and a set of its correlation functions h�l1(x1) � � � �ln(xn) i of the \primary �elds" froma �xed set f�lg . The correlation functions are symmetric in the pairs of arguments (xi; li) , arede�ned for non-coincident insertion points xi 2 � and are assumed smooth. We shall also needlater some knowledge of their short distance singularities. The dependence of both the partitionand the correlation functions on the Riemannian metric  will be assumed regular enough toassure existence of distributional functional derivatives of arbitrary order. The basic hypothesisare the following symmetry properties:(i) di�eomorphism covariance Z = ZD� ; (2)h�l1(D(x1)) � � � �ln(D(xn)) i = h�l1(x1) � � � �ln(xn) iD� ; (3)(ii) local scale covariance Ze� = e c96� (kd�k2L2 + 4R� � r dv) Z ; (4)h�l1(x1) � � � �ln(xn) ie� = nQi=1 e��li �(xi) h�l1(x1) � � � �ln(xn) i (5)where c is the central charge of the theory. In (i) , we limit ourselves to orientation preservingdi�eomorphism assuming that under the change of orientation of the surface,Z 7! Z ; (6)h�l1(x1) � � � �ln(xn) i 7! h��l1(x1) � � � ��ln(xn) i ; (7)21



where �l 7! ��l is an involution of the set of primary �elds preserving their conformal weights(: eiq� : 7! : e�iq� : for the toroidal compacti�cations). In what follows we shall �rst explore theimplications of the above identities which we shall, jointly, call conformal symmetries. Otherimportant properties of the correlation functions, for example those responsible for the Hilbertspace interpretation of the theory, will be introduced and analyzed later.Let us de�ne new correlation functions with insertions of energy-momentum tensor1 bysetting hT�1�1(y1) � � � T�m�m(ym) �l1(x1) � � � �ln(xn) i= Z�1 (4�)m �m��1�1 (y1) ��� ��m�m (ym) Z h�l1(x1) � � � �ln(xn)i ; (8)where �� @�@� � �1 is the inverse metric. In complex coordinates, energy-momentum tensorhas the components Tzz = T�z�z and Tz�z = T�zz = Tz�z :By de�nition, the correlation functions hT�1�1(y1) � � � T�m�m(ym) �l1(x1) � � � �ln(xn) i are distri-butions in their dependence on y1; : : : ; ym . As we shall see below, they are given by smoothfunctions for non-coincident arguments and away from xi's, but we shall also have to study theirdistributional behavior at coinciding points.2. Conformal Ward identitiesSymmetries in QFT are expressed as Ward identities between correlation functions. Eqs. (3)and (5) are examples of such relations for group-like conformal symmetries. It is often useful towork out also Ward identities corresponding to in�nitesimal, Lie algebra version of symmetries.We shall do this here for the in�nitesimal conformal symmetries. The resulting formalism wasthe starting point of the 1984 Belavin-Polyakov-Zamolodchikov's paper. The approach presentedhere is close in spirit to the 1987 article by Eguchi-Ooguri (to some extend also to Friedan's 1982Les Houches lecture notes). The general strategy is to expand the global symmetry identities tothe second order in in�nitesimal symmetries. This will be a little bit technical so you might wishto see �rst the results listed at the end of this section.Let us start by exploring the in�nitesimal version of the local scale covariance (4). Using thede�nition (8), we obtain the relation4�Z�1 ��� �����=0Ze� = �zz hTzz i � 2z�z hTz�z i � �z �z hT�z �z i = c6 r : (9)Note that if  = jdzj2 then zz = �z �z = zz = �z �z = 0, z�z = 12 and z�z = 2. Besides, thescalar curvature of  vanishes. In such a metric, eq. (9) reduces to the equalityhTz�z i = 0 (10)which states that energy-momentum tensor in a CFT is traceless (in the at metric, tr T�� =4Tz�z ). It is the �rst example of Ward identities expressing the in�nitesimal conformal invarianceon the quantum level. We shall see further identities of this type below.1called also stress tensor in a static view of the Euclidean �eld theory22



Notice that if  7! e� with � = 1 around the insertion points then the correlation functionsdo not change. Let us �x the complex structure of � and holomorphic complex coordinatesaround the insertion points of a correlation function. Call a metric  locally at if it is compatiblewith the complex structure of � and of the form jdzj2 around the insertions. For such a choiceof  we shall drop the subscript \ " in the notation for the correlation functions, like in eq. (10).We may restore the full dependence on the conformal factor by using the covariance relations (4)and (5). For example, for hTzz i , we obtainhTzz ie� = hTzz i + c24 ��zz (k@�k2L2 + 4 Z� �rdv) : (11)In order to compute the functional derivative on the right hand side, we shall need the followingLemma. Let z�z = �zz = 2. To the �rst order in zz ,r = �12 (@2z zz + @2�z �z �z) : (12)Proof. Consider the inverse metric �1 = zz @2z + 4@z@�z + �z�z@2�z : To compute the curvature tothe �rst order in zz we shall change the variables to z0 = z+�(z; �z) so that in the new coordinatethe metric is (4 + �)@z0@�z0 : Since@z = (1 + @z�)@z0 + (@z ��)@�z0 ; @�z = (@�z�)@z0 + (1 + @�z ��)@�z0then, retaining only the terms of the �rst order in zz , � (and their complex conjugates), weobtain �1 = (zz � (@xzz)� � (@�zzz)�� + 2zz@z� + 4@�z�)@2z0+ (4 + 4@z� + 4@�z �� + 2zz@z �� + 2�z �z@�z�)@z0@�z0+ (�z �z � (@�z�z �z)�� � (@z�z �z)� + 2�z �z@�z �� + 4@z ��)@2�z0 (13)(we have kept more terms then needed for the Lemma for a future use). The requirement that�1 = (4 + �)@z0@�z0 means in the leading order that @�z� = �14zz . Hence to the �rst order inzz r0v0 = �i �@ 0@ 0 log (1 + @z� + @�z ��) = i@�z@z(@z� + @�z ��)dz ^ d�z= �12 (@2zzz + @2�z�z �z)v0where v0 is the new volume form equal to i2 dz ^ d�z in the 0th order.Using the Lemma and the relation kd�k2L2 = R�(@��)(@��)�� dv ; we obtain the relation��zz (kd�k2L2 + 4 Z� �rdv) = �2@2z� + (@z�)2 (14)which, substituted into eq. (11), gives the dependence on the conformal factors of the expectationvalue of Tzz : hTzz ie�dzd�z = hTzz i � c12 (@2z � � 12 (@z�)2) : (15)23



What are the transformation properties of hTzz i under holomorphic changes z 7! z0 = f(z)of the local coordinate? Under such replacements the notion of a locally at metric changesaccordingly. By the di�eomorphism covariance and eq. (15), we have(dz0dz )2 hTz0z0 i = hTzz ijdz0=dzj2dzd�z= hTzz i � c12 �@2z log (dz0=dz) � 12 (@z log (dz0=dz))2�= hTzz i � c12 �d3z0=dz3dz0=dz � 32 ( d2z0=dz2dz0=dz )2� � hTzz i � c12 fz0; zg : (16)The function fz0; zg is the Schwarzian derivative of the change of variables. As we see, inthe correlation functions with locally at metric, Tzz does not transform as a pure quadraticdi�erential under general holomorphic changes of variables. The transformation law (16) de�neswhat is called a projective connection on �.Problem 1. Show that the Schwarzian derivative fz0; zg vanishes i� z0 = az+bcz+d with ( a bc d ) 2SL(2;C) , i. e. for the M�obius transformations.The further information about the correlation functions with energy-momentum tensor inser-tions will be obtained by studying deviations of the metric from the locally at one. Applyingto eq. (9) the operator �Z ��ww Z at  locally at2 and using eq. (12), we obtain� �(2)(z � w) hTzz i + hTww Tz�z i = �c12 @2z �(2)(z �w) ; (17)where �(2) stands for the two-dimensional �-function. Let us explore now the implications of thedi�eomorphism covariance (2) and (3). Under an in�nitesimal transformationD(z) = z + �(z; �z) � z0 ; (18)the change in the inverse metric ��1 =  0�1 � �1 , where D�0 =  , may be read from eq.(13): �zz = �(@zzz)� � (@�zzz) �� + 2zz @z� + 4@�z� ;�z�z = 2@z� + 2@�z �� + zz @z �� + �z �z@�z� ;��z �z = �(@�z�z �z) �� � (@z�z �z)� + 2�z �z@�z �� + 4@z �� :The di�eomorphism covariance implies thatZ� (hTzz i �zz + 2hTz�z i �z�z + hT�z �z i ��z �z) dv = 0 :Inserting the expressions for ��1 , stripping the resulting equation from the arbitrary function� and retaining only the �rst order terms in zz around a locally at metric, we obtain(@zzz) hTzz i + 2@z (zz hTzz i) + 4@�z hTzz i2w and z refer to the complex coordinates of two nearby insertions taken in the same holomorphic chart24



+4@z hTz�z i + 2@�z (�z �z hTz�z i) + (@z�z �z )hT�z �z i = 0 : (19)Specializing to zz = 0, we infer that@�z hTzz i = 0 = @zhT�z �z i : (20)More generally, the component Tzz (T�z �z ) of energy-momentum tensor is analytic (anti-analytic)in correlation functions in a locally at metric and away from other insertions. Eq. (20) is anotherconformal Ward identity.At coinciding points, the correlation functions of energy-momentum tensor give rise to sin-gularities which we shall study now. Application of �Z ��ww Z at  locally at to eq. (19)gives:� �@z �(2)(z � w)� hTzz i + 2�@z �(2)(z � w) hTww i + @�z hTzz Tww i + @z hTz�z Tww i = 0 :Using eq. (17) di�erentiated with respect z in order to replace @z hTz�z Tww i in the last relation,we obtain@�z hTzz Tww i = �� �@z �(2)(z � w)� hTzz i � �@z�(2)(z � w)hTww i � �c12 @3z �(2)(z � w)= ��c12 @3z �(2)(z � w) � 2�@z�(2)(z �w) hTww i + � �(2)(z � w)@w hTww i :This is a distributional equation. Since �(2)(z � w) = 1� @�z 1z�w in the sense of distributions, itfollows that@�z hTzz Tww i = @�z  c=2(z �w)4 + 2(z � w)2 hTww i + 1z � w @w hTww i! ; (21)which is still another conformal Ward identity. Since the only solutions of the distributionalequation @�zf = 0 are analytic functions, one may rewrite the identity (21) as a short distanceexpansion encoding the ultraviolet properties of the CFT:hTzz Tww i = c=2(z � w)4 + 2(z � w)2 hTww i + 1z � w @w hTww i + : : : ; (22)where \ : : :" stands for terms analytic in z around z = w: The complex conjugation of eq.(22) gives the singular terms of hT�z �z T �w �w i , this time, up to anti-analytic terms. Expansions ofthe type (22) are usually called the operator product expansion (OPE) in accordance withthe operator interpretation of correlation functions to be discussed in the next section. We shallfollow this terminology.What about the mixed insertions? Di�erentiating (Z � ) eq. (19) with respect to  �w �w at locally at, we obtain@�z hTzz T �w �w i + @z hTz�z T �w �w i + � (@z �(2)(z � w)) hT�z �z i = 0 :With the use of the complex conjugate version of eq. (17) to eliminate hTz�z T �w �w i , this reducesto @�z hTzz T �w �w i = � �c12 @z @ 2�z �(2)(z � w)25



which, stripped of @�z , giveshTzz T �w �w i = � �c12 @z @�z �(2)(z � w) + : : : ; (23)i. e. a contact term with support at z = w plus a function analytic in z and anti-analytic in w .The other source of singular contributions to the correlation functions of Tzz or T�z �z areinsertions of the (primary) �elds �l(x) . Let us compute these singularities. Proceeding similarlyas before, we apply �Z ��� to Ze� h�l(x)ie� at � = 0 and  locally at obtaining with the helpof eqs. (4) and (5) the relationhTz�z �l(w; �w)i = ��l �(2)(z � w) h�l(w; �w) i (24)(we have replaced the point x in the argument of �l by its local coordinate w and its complexconjugate to stress the non-holomorphic dependence on x of the �l(x) insertion). Next weexploit the di�eomorphism covariance. For D(z) = z + �(z; �z) � z0 and  = D� 0 ,h�l(w0; �w0) i0 Z0 = h�l(w; �w) i Z :Since for  = jdzj2��1 � ( 0)�1 � �1 = 4(@�z�)@2z + 4(@z� + @�z �� )@z@�z + 4(@z ��)@2�z ;to the �rst order in � , see eq. (13), we infer that� �(2)(z � w) @w h�l(w; �w) i � @�z hTzz �l(w; �w) i � @z hTz�z �l(w; �w) i = 0 :Using the last equation to eliminate @z hTz�z �l(w; �w) i from eq. (24) acted upon by @z , we obtainthe relation@�z hTzz �l(w; �w) i = ���l �(2)(z � w) h�l(w; �w) i + � �(2)(z � w) @w h�l(w; �w) iwhich may be conveniently rewritten as an OPE of the product of the Tzz component of energy-momentum tensor with a primary �eld:hTzz �l(w; �w) i =  �l(z �w)2 + 1z � w @w! h�l(w; �w) i + : : : : (25)Finally note, that under the holomorphic change of the local coordinate z 7! z0 = f(z)h�l(z0; �z0) i = h�l(z; �z) ijdz0=dzj2dzd�z = jdz0dz j�2�l h�l(z; �z) ior h�l(z0; �z0) i (dz0)�l (d�z0)�l = h�l(z; �z) i (dz)�l (d�z)�lso that �l behaves like a (�l;�l)-form in the correlation functions with locally at metric.One often needs to consider also primary �elds with weights (�l; ~�l) and �l � ~�l integer (orhalf-integer). dl = �l + ~�l is the scaling dimension of such a �eld and sl = �l � ~�l its spin.26



Geometrically, the correlation functions of such �elds are sections of the sth power of the spheresubbundle in the cotangent bundle T ��.Let us collect the relations obtained in this section for low point insertions in the correlationfunctions. Since all the considerations were local, the same equalities hold in correlation functionswith other insertions as long as their points stay away from the insertions taken together. Addingalso the relations involving the complex conjugate components of energy-momentum tensor andintroducing simpli�ed notation T � Tzz , �T = T�z �z , we obtain:i/. identities Tz�z = 0 = T�zz ; (26)@�zT = 0 = @z �T ; (27)ii/. operator product expansionsT (z)T (w) = c=2(z � w)4 + 2(z � w)2 T (w) + 1z � w @wT (w) + : : : ;�T (�z) �T ( �w) = c=2(�z � �w)4 + 2(�z � �w)2 �T ( �w) + 1�z � �w @ �w �T ( �w) + : : : ;T (z) �T ( �w) = ��c12 @z @�z �(2)(z �w) + : : : ; (28)T (z) �l(w; �w) =  �l(z � w)2 + 1z � w @w!�l(w; �w) + : : : ; (29)�T (�z) �l(w; �w) =  �l(�z � �w)2 + 1�z � �w @ �w!�l(w; �w) + : : : ; (30)iii/. transformation lawsT (z0) (dz0)2 = T (z) (dz)2 � c12 fz0; zg (dz)2 ; (31)�T (�z0) (d�z0)2 = �T (�z) (d�z)2 � c12 fz0; zg (d�z)2 ; (32)�l(z0; �z0) (dz0)�l (d�z0) ~�l = �l(z; �z) (dz)�l (d�z) ~�l : (33)3. Physical positivity and Hilbert space pictureUp to now we have analyzed abstract conformal �elds in the Euclidean formalism, probabilisticin its nature and distinct from the traditional operator approach. The operator formalism ofQFT �ts into the general quantum mechanical scheme with the(i) Hilbert space of states,(ii) representation of the symmetry group or algebra,27



(iii) distinguished family of operatorsas its basic triad. This is a fundamental fact of QFT that the passage between the Euclidean andthe operator formalisms, which we have discussed already for free �elds, may be done in quitegeneral circumstances. This fact is responsible for the deep relation between critical phenomenaand quantum �elds and it has strongly marked the developments of QFT. CFT, which is not anexception in this respect, has largely pro�ted from the unity of two approaches. In the presentsection we shall discuss how the operator picture may be recovered from the Euclidean formulationof CFT presented above assuming the physical (or Osterwalder-Schrader) positivity formulatedas a condition on correlation functions on the Riemann sphere CP 1 . Analysis of the genus zerosituation will allow to recover the Hilbert space of states and to translate the operator productexpansions of the last section into an action of the Lie algebra of conformal symmetries and ofthe primary �eld operators in the space of states. Later we shall describe the operator formalismon higher genus Riemann surfaces which permits to relate naturally CFT in di�erent space-timetopologies.Let us consider the map # : CP 1 ! CP 1 , #(z) = �z�1 . # interchanges the disc D = f jzj �1g with D0 � fjzj � 1g and leaves invariant their common boundary f jzj = 1g . Suppose thatwe are given a Riemannian metric  on D , compatible with the complex structure, which is ofthe form jzj�2jdzj2 around @D (we shall call such a metric at at boundary). #� is a metricon D0 and it glues smoothly with  on D to the metric #� _  on CP 1 . Consider formalexpressions X = Yi �li(zi; �zi) (34)for distinct points zi in the interior of D (with the empty product case included). Denote��l(z; �z) � (��z�2)�l (�z�2) ~�l ��l(1�z ; 1z ) (35)where l 7! �l is the same involution that appeared in eq. (7). For X as above, we set�X = Yi ��li(zi; �zi) : (36)The physical positivity requires that for each family (��) of complex numbers, each family (X�)of expressions (34) and each family (�) of metrics on D at at boundaryX�1; �2 ���2 ��1 Z#��2_�1 h (�X�2)X�1 i#��2_�1 � 0 : (37)These properties hold for the free �eld compacti�cations. The condition (37) may be rewrittenusing correlation functions with energy-momentum insertions and a �xed metric. Set�T (z) � �z�4 T (1�z ) ; (38)� �T (�z) � z�4 �T (1z )and extend the de�nition (34) to expressionsY = Ym T (zm)Yn �T (�zn)Yi �li(zi; �zi) (39)28



(with all points in the interior of D and distinct) for which�Y = Ym �T (zm)Yn ��T (�zn)Yi ��li(zi; �zi) : (40)One may infer from the property (37) thatX�1; �2 ���2 ��1 h (�Y�2)Y�1 i � 0 (41)where h � � � i denotes the correlation functions in a locally at metric.Problem 2. Show that (37) implies (41).The construction of the Hilbert space H of states is now simple. The expressionX�;� ��0� �� h (�Y 0�)Y� ide�nes a hermitian form on the space VD of formal linear combinations of products (39). Dueto (41), this form is positive and becomes positive de�nite on the quotient by its null subspaceV nullD . One sets H = VD=V nullD : (42)We shall denote by � the canonical map from VD to H, by H0 its image � H and by Y theimage �(Y ) of Y . The empty product in (39) gives rise to the \vacuum vector" 
. The scalarproduct is given by (Y 0 ; Y ) = h (�Y 0)Y i :H carries an anti-unitary involution I mapping vector Y to �Y where Y corresponds to�Y = Ym T (�zm)Yn �T (zn)Yl ��li(�zi; zi) : (43)4. Virasoro algebra and its primary �eldsDe�ne the action of dilations by q 2 C; 0 < jqj � 1; on the �elds by settingSqT (z) = q2T (qz); Sq �T (�z) = �q2T (�q�z); Sq�l(z; �z) = q�l �q ��l�l(qz; �q�z) :For Y given by (39), we putSqY = Ym SqT (zm)Yn Sq �T (�zn)Yl Sq�li(zl; �zl) :29



Problem 3. Using the conformal symmetries of the correlation functions, verify thath (�Y 0)SqY i = h (�S�qY 0)Y i : (44)In the Hilbert space, we may de�ne the dilation operator Sq by the equalitySqY = �(SqY ) :Note that eq. (44) implies that Sq is well de�ned on the dense invariant domain H0 . In fact, thefamily of operators (Sq) forms a semigroup: Sq1Sq2 = Sq1q2 . Applying many times the Schwartzinequality, identity (44) and the semigroup property of Sq , one obtains following Osterwalder-Schrader: j (Y 0; SqY ) j � kY 0k kSqYk = kY 0k (Y ; S�qqY )1=2� � � � � � � kY 0k kYk 12+:::+ 12n�1 (Y ; S(�qq)2n�1 Y )1=2n : (45)Assume now that for each � > 0 , there exists a constant C� s. t.j h (�Y 0)StY i j � C� t�� (46)when t ! 0 . What it means is that when the distances of a group of insertions are uniformlyshrunk to zero the singularity of the correlation functions is not stronger then the power lawgiven by the overall scaling dimension of the group. Using bound (46) on the right hand side of(45) and taking n to in�nity, we infer thatj (Y 0; SqY ) j � kY 0kkYk ;i. e. that the dilation semigroup Sq is composed of contractions of H . Eq. (44) implies now thatS�q = S�q . The weak continuity of the semigroup (Sq) on H follows from that on H0 which isevident. By the abstract semigroup theorySq = qL0 �q ~L0 (47)for strongly commuting self-adjoint operators L0 and ~L0 s. t. L0 + ~L0 � 0 : Clearly, H0 isinside the domain of L0 and of ~L0 andL0Y = @qjq=1 SqY ; ~L0Y = @�qjq=1 SqY : (48)It also follows that SqH0 is dense in H for all q .L0 ; ~L0 are only the tip of an operator iceberg. To see more of it, de�ne operators T (z) ,�T (�z) and 'l(z; �z) , with SzH0 as the (dense) domain (jzj < 1), by settingT (z)Y = �(T (z)Y ) ; �T (�z)Y = �( �T (�z)Y ) ; 'l(z; �z)Y = �(�l(z; �z)Y ) :It is easy to see that the operators T (z) , �T (�z) and 'l(z; �z) are well de�ned. Note that for Ygiven by eq. (39) and with the absolute values of all insertion points di�erent,Y = R Ym T (zm)Yn �T (�zn)Yi 'li(zi; �zi)! 
 (49)30



where R (� � �) reorders the operators so that they act in the order of increasing jzj . This is thereason why the operator scheme described here is often called radial quantization. Under theconjugation by the anti-unitary involution I of H ,I'l(z; �z)I = '�l(�z; z) ; IT (z)I = T (�z) ; I �T (�z)I = �T (z) : (50)It will be useful to introduce Fourier components of the operators T (z) and �T (�z) :Ln = 12�i Ijzj=r<1zn+1T (z) dz ; (51)~Ln = � 12�i Ijzj=r<1�zn+1 �T (�z) d�z : (52)Since the insertion of T (z) in the correlation functions h � � � i is analytic in z as long as theother insertions are not met, the matrix elements (Y 0 ; LnY ) (and hence the vector LnY itself)does not depend on r as long as r < 1 and the contour jzj = r surrounds the insertions of Y(similarly for ~Ln ). Notice that(Y 0 ; LnY ) = 12�i Ijzj=1��zn+1 h (�Y 0) T (z) Y idz= 12�i Ijzj=1+�zn�3 h (�(Y 0T (1�z ) ) Y i dz (53)where we have moved the integration contour slightly, representing T (z) with jzj = 1 + � asz�4�T ( 1�z ) . The right hand side is equal to(� 12�i Ijzj=1+��zn�3 T̂zz(1�z ) d�z Y 0 ; Y )= ( 12�i Ijwj=(1+�)�1w�n+1 T (w) dw Y 0 ; Y ) = (L�nY 0 ; Y ) :It follows, that operators Ln (and ~Ln ) are closable3 and their adjoints satisfyL �n = L�n ; ~L �n = ~L�n : (54)Ln 's and ~Ln 's commute with the anti-involution I of H . It will be convenient to somewhatextend the domain of de�nition of the operators introduced above. Let us admit in expressionsY of (39) integrated insertions Hjzj=r zn+1T (z)dz and similarly for �T (�z) . Denote by H1 theresulting subspace of H . Of course H1 contains H0 and is invariant under Ln's and ~Ln's.Operators T (z) , �T (�z) and 'l(z; �z) may be clearly extended to SzH1 and we shall assumebelow that this has been done4.The calculation which we shall do now is an example of an argument which translates (certain)OPE's into commutation relations and is used in CFT again and again. A devoted student should3we keep the same symbols for their closures4let us remark that these operators are not closable so their domains should be handled with special care31



memorize its idea once for all. We start with the OPE (28) for T (z) which will give commutationrelations between Ln 's. Let us consider the matrix element(Y 0 ; [Ln ; T (w)]Y ) (55)= 12�i  Ijzj=jwj+�dz � Ijzj=jwj��dz! zn+1 h (�Y 0) T (z) T (w) Y i (56)= 12�i Ijz�wj=�zn+1 dz h (�Y 0) ( c=2(z�w)4 + 2(z�w)2 T (w) + 1z�w @wT (w)) Y i ; (57)where we have used the fact (49) that the order of operators is determined by the radial order ofinsertions in the correlation function. In the last line we have collapsed the contour of integrationto a small circle around w and inserted the OPE (28). Expanding zn+1 around z = wzn+1 = ((z � w) + w)n+1 = n3�n6 (z � w)3wn�2 + n2+n2 (z �w)2wn�1+(n+ 1)(z � w)wn + wn+1 + : : :and retaining only the terms which contribute to the residue at z = w in the last integral of eq.(57), we obtain(Y 0 ; [Ln ; T (w)]Y ) = h (�Y 0) f c12 (n3 � n)wn�2 + 2(n + 1)wn T (w)+wn+1 @wT (w)g Y iwhich is the weak form of relations[Ln ; T (w)] = c12 (n3 � n)wn�2 + 2(n + 1)wn T (w) + wn+1 @wT (w) : (58)Similarly, the OPE (28) implies that[~Ln ; �T ( �w)] = c12 (n3 � n) �wn�2 + 2(n + 1) �wn �T ( �w) + �wn+1 @ �w �T ( �w) : (59)By virtue of eq. (28), the mixed commutators [Ln ; �T ( �w)] and [~Ln ; T (w)] vanish.Performing a contour integral over w on both sides of eq. (58) multiplied by zm+1 , we obtainthe commutation relations[Ln ; Lm] = (n�m)Ln+m + c12 (n3 � n)�n+m;0 : (60)The (in�nite-dimensional) Lie algebra with generators Ln and a central element C (called thecentral charge) and with relations (60), where c is replaced replaced by C , is known as theVirasoro algebra. We shall denote it by V ir . It is closely related to the (Witt) Lie algebraof polynomial vector �elds V ect(S1) on the circle f jzj = 1 g with generators ln = �zn+1@z andrelations [ln; lm] = (n�m) ln+m :More exactly, V ir is a central extension of V ect(S1) , i. e. we have an exact sequence of Liealgebras 0 �! C �! V ir �! V ect(S1) �! 0 ;32



where the second arrow sends 1 to C and the third one maps Ln to ln .Eq. (59) gives rise to another set of Virasoro commutation relations[~Ln ; ~Lm] = (n�m) ~Ln+m + c12 (n3 � n)�n+m;0 : (61)Ln's and ~Lm's commute. Both (60) and (61) hold on the invariant dense domain H1 2 H , As wesee, the Hilbert space of states H of a CFT carries a densely de�ned unitary (i. e. with property(54)) representation of the algebra V ir � V ir with central charges acting as the multiplicationby c .The representation theory of the Virasoro algebra has played an important role in the con-struction of models of CFT. We shall include for completeness a brief sketch of its elements inthe next section. But why did the Virasoro algebra appear in CFT in the �rst place? As wehave mentioned, V ir is the central extension of an algebra of vector �elds on the circle. ButV ect(S1)�V ect(S1) may be identi�ed with the Lie algebra of (polynomial) conformal vector �eldson the two-dimensional cylinder f (t; x) j xmod2� g with the Minkowski metric M � dt2�dx2 .By de�nition, the conformal vector �elds X satisfy LX M = fX M for some function fX , whereLX denotes the Lie derivative w.r.t. X . The identi�cation assigns to generators ln and �ln theconformal vector �elds �zn+1@z and ��zn+1@�z , respectively, with z � ei(t+x) and �z � ei(t�x) .In particular, i(l0 + �l0) is the in�nitesimal shift of the Minkowski time t and i(l0 � �l0) thein�nitesimal shift of x . Hence V ect(S1) � V ect(S1) is the Lie algebra of Minkowskian confor-mal symmetries and representations of V ir � V ir describe its projective actions realizing suchconformal symmetries on the quantum-mechanical level (projective representations correspondto genuine actions of symmetries on the rays in the Hilberts space representing (pure) quantumstates). H � L0+ ~L0 is the quantum Hamiltonian5 and P = L0� ~L0 is the quantum momentumoperator. The unitarity conditions (54) correspond to the natural real form of the algebra com-posed of real vector �elds: such vector �elds are represented by skew-adjoint operators so thatthe corresponding global conformal transformations act by unitary operators. V ect(S1) may beviewed as the Lie algebra of the group Diff+(S1) of orientation preserving di�eomorphisms ofthe circle. Let gDiff+(S1) denote the group of di�eomorphisms of the line commuting with theshifts by 2� . 0 �! Z �! gDiff+(S1) �! Diff+(S1) �! 0 :The group D � ( gDiff+(S1)� gDiff+(S1))=Zdiag (which acts on the light-cone variables x� �t � x is the group of conformal, orientation and time-arrow preserving di�eomorphism of theMinkowski cylinder. V ir � V iraction in H integrates to the projective unitary representationof D .We shall need more information about the representations of V ir � V ir which appear inCFT. This may be obtained by studying the behavior of the primary �eld operators with respectto the Virasoro algebra action.Problem 4. (a). Show by employing the contour integral technique that[Ln ; 'l(w; �w)] = �l (n+ 1)wn'l(w; �w) + wn+1 @w'l(w; �w) ; (62)[~Ln ; 'l(w; �w)] = ��l (n+ 1) �wn'l(w; �w) + �wn+1 @ �w'l(w; �w) : (63)5later, we shall see that it is more natural to shift H by a constant33



(b). Using the above relations and eqs. (58) and (59) prove that the operators L0 ; ~L0 given by(51) and (52) coincide with the generators of the semigroup (Sq) introduced earlier.Eqs. (62) and (63) express on the operator level the properties of the (Virasoro) primary �eldsof conformal weights (�l; ~�l) . Comparing them to the last two equations of Lecture 1, we inferthat operators 'l(w; �w) for (w; �w) = (e�t+ix; e�t�ix) should be interpreted as the imaginary timeversions of Minkowski �elds. Note that the components T (z) and �T (�z) fail to be Virasoroprimary �elds of weights (2; 0) and (0; 2) , respectively, due to the anomalous term proportionalto c in the relations (58) and (59).Recall, that (as a generator of a self-adjoint semigroup of contractions) the self-adjoint opera-tor H = L0+ ~L0 has to be positive. In Minkowskian QFT with Poincare invariance the positivityof the Hamiltonian implies the spectral condition H � P � 0 where P is the momentum op-erator. The same is true in CFT with its Hilbert space corresponding to cylindrical Minkowskispace. The Virasoro commutation relations imply,L0 � 0 ; ~L0 � 0 : (64)Indeed. Let EB be a non-vanishing joint spectral projector of L0 and ~L0 corresponding toeigenvalues in a small ball B , with the L0 eigenvalues negative and such that EB�(1;0) = 0.Then, for any normalized vector  with EB =  , we haveL1 = L1EB = EB�(1;0)L1 = 0 :On the other hand,0 � (L�1 ; L�1 ) = ( ; L1L�1 ) = ( ; [L1; L�1] ) = 2( ; L0 ) < 0which shows that L0 cannot have negative spectrum. Similarly for ~L0 . Hence only positiveenergy representations of the Virasoro algebra with L0 � 0 ( ~L0 � 0) appear in CFT withthe Hilbert space interpretation. The techniques of CFT apply, however, also to certain scalinglimits of statistical mechanical models without physical positivity where a wider class of Virasororepresentations intervenes.Relations (62) and (63) provide further spectral information about L0 and ~L0 . They implythe equalities Ln
 = 0 ; n � �1 ~Ln
 = 0 ; n � �1 (65)Ln'l(0) 
 = 0 ; n > 0 ; ~Ln'l(0) 
 = 0 ; n > 0 ; (66)L0'l(0) 
 = �l'l(0) 
 ; ~L0'l(0)
 = ~�l'l(0) 
where, by de�nition, 'l(0) 
 = limz!0 'l(z; �z) 
. In particular, it follows that the vacuum vector
 is an eigenvector of L0 and ~L0 with the lowest possible eigenvalues 0 . We shall assume that itis a unique vector, up to normalization, with this property (although there are CFTs without thisproperty). In fact, 
 is annihilated by the sl2�sl2 Lie subalgebra generated by L0; L�1; ~L0 and~L�1 but not by the entire symmetry algebra V ir � V ir of the theory: the conformal symmetryis spontaneously broken. 34



'l(0) 
 are also eigenvectors of L0 and ~L0 , with eigenvalues (�l; ~�l) and it follows that�l; ~�l > 0 . Also I
 = 
 and I 'l(0)
 = '�l(0)
. In fact, vectors 'l(0) 
 are annihilatedby all Virasoro generators with positive indices. The eigenvectors of L0; ~L0 (and C ) with suchproperty are called Virasoro highest weight (HW) vectors.Summarizing, we have shown that the Hilbert space of states in a CFT carries a (denselyde�ned) positive energy representation of two commuting copies of the Virasoro algebra with thesame central charge c . The primary �eld operators 'l(z; �z) applied to the vacuum become inthe limit z ! 0 HW vectors of the Virasoro representations.5. Highest weight representations of V irFor completeness, we include a brief sketch of representation theory of the Virasoro algebra.An important class of representations of the Virasoro algebra is constituted by the so calledhighest weight (HW) representations. Let � = CL0 �CC , N+ = 1Ln=1CLn , N� = 1Ln=1CL�n .V ir = N� � � �N+ is the triangular decomposition of the Virasoro algebra. Let � 2 �� , thedual space to � , �(C) = c; �(L0) = �. A V ir-module (representation) Mc;� is called a HWmodule of HW � if there exists a vector v0 2 V such thatN+v0 = 0 ;U(N�)v0 = Mc;� ;xv0 = �(x)v0 for x 2 �where U( � ) denotes the enveloping algebra. v0 is called the HW vector, c the central charge and� the conformal weight of the HW representation. It follows that Mc;� is the linear span of thevectors L�nrL�nr�1 � � �L�n1v0 with 0 < n1 � n2 � : : : � nr , but these vectors are not necessarilylinearly independent. N = rPi=1 ni is called the level of the vector L�nrL�nr�1 � � �L�n1v0 . A levelN vector is an eigenvector of L0 with eigenvalue N + �. We shall denote the subspace of thelevel N vectors by M (N)c;� . Clearly vectors of di�erent levels are linearly independent, thus wehave Mc;� = 1MN=1M (N)c;�with the dimM (N)c;� � p(N) , the partition number of N . A HW module with dim(M (N)c;� ) = p(N)for all N , i. e. where all the vectors of the form L�nrL�nr�1 � � �L�n1v0 (with ordered ni 's) arelinearly independent is called the Verma module Vc;� . It exists for all complex c ; � and isunique up to isomorphisms. In the analysis of the HW modules of the Virasoro algebra animportant role is played by singular vectors. A non-zero vector v(N)s of level N is calledsingular, if Lnv(N)s = 0 for all n > 0 . Any vector vs with Lnvs = 0 for all n > 0 is a a sum ofsingular vectors (its non-zero homogeneous components). Any singular vector v(N)s generates asubmodule in Vc;� isomorphic to Vc;�+N . We have:(i) Any submodule of Vc;� is generated by its singular vectors.35



(ii) Any HW module Mc;� is isomorphic to a quotient of the Verma module Vc;� .(iii) The factor module of the Verma module by the maximal proper submodule is the unique(up to isomorphisms) irreducible HW module Hc;� .A V ir -module M is called unitary, if there exists a (positive, hermitian) scalar product ( � ; � )on M s. t. (v; Lnw) = (L�nv;w) for all n 2 Z and for all v;w 2 V : (67)It follows then that (v; Cw) = (Cv;w) for all v;w 2 V and that the eigenvalues of C andL0 are real. On each Verma module Vc;� with c and � real there exists a unique hermitian(Shapovalov) form h � ; � i s. t. hv; Lnwi =hL�nv;wi for all v;w 2 Vc;� and that hv0; v0i = 1.De�ne Nullc;� = fv 2 Vc;� j hv;wi = 0 for all w 2 Vc;�g .(i) hv(N); v(N 0)i = 0 if v(N) (v(N 0) ) is a level N (N 0 ) vector and N 6= N 0 ,(ii) any singular vector of positive level belongs to Nullc;� .(iii) Nullc;� is the maximal proper submodule of Vc;� , i. e. Hc;� = Vc;�=Nullc;�Let us investigate the conditions under which Hc;� is a unitary V ir-module, or, equivalently,under which the hermitian form on Hc;� induced by the Shapovalov form is positive. SincehL�nv0; L�nv0i = 2n� + c12(n3 � n) , necessarily c � 0 and � � 0 . Now consider the two 2nlevel vectors v = L 2n v0 and w = L�2nv0 and suppose that c = 0. The Gram determinantdet� hv; vi hv;wihw; vi hw;wi � = �20n4�2 + 32n3�3 :Thus for c = 0 a necessary (and su�cient) condition is � = 0. c;� = 0 correspond to the trivialone-dimensional representations. So there exists no non-trivial unitary HW representation of theLie algebra V ect(S1) of the (polynomial) vector �elds on the circle. It is enough to study thepositivity of the Shapovalov form restricted the the subspaces H(N)c;� of the given level. Let m(N)c;�denote the p(N)�p(N) matrix with the entries hL�nrL�nr�1 � � �L�n1v0 ; L�n0rL�n0r�1 � � �L�n01v0 iwhere (ni) and (n0i) are ordered and Pni = Pn0i = N . Unitarity of Hc;� is equivalent to theconditions m(N)c;� � 0 for all N . In particular, det(m(N)c;� ) has to be non-negative for all N whenHc;� is unitary. Direct calculation for level 1 and 2 givesdet(m(1)c;�) = 2� ;det(m(2)c;�) = 4� �12c+ (c� 5)� + 8�2� :A general formula for the determinant of m(N)c;� was given by Kac and was proven by Feigin andFuchs: det(m(N)c;� ) = �N Y1�rs�Nr;s2N (���r;s(m))p(N�rs)36



where �r;s(m) = ((m+1)r�ms)2�14m(m+1) , m is a root of the equation c = 1 � 6m(m+1) ; and �N =Q1�rs�Nr;s2N ((2r)ss!)n(r;s) with n(r; s) denoting the number of partitions of N in which r appears stimes.For � ! 1 , m(N)c;� goes to a diagonal matrix with positive entries. From the Kac formulait follows that det(m(N)c;� ) > 0 for c > 1 , � > 0 . Therefore m(N)c;� is non degenerate and positivefor c > 1 , � > 0 and non-negative for c � 1 , � � 0 . Thus Vc;� is irreducible for c > 1 , � > 0and Hc;� is unitary for c � 1 , � � 0 . Since, for c = 1det(m(N)1;�) = �N Y1�rs�N  �� (r � s)24 !p(N�rs) ;it follows that V1;� is irreducible if and only if � 6= n24 , n 2 Z .For 0 � c < 1, the situation is more interesting providing the �rst example of the selectivepower of conformal invariance.Theorem. For (c;�) with 0 � c < 1 and � � 0 , unitarity of the irreducible HW representationHc;� requires that (c;�) belong to the following discrete series of points:c = 1 � 6m(m+1)�r;s(m) = ((m+1)r�ms)2�14m(m+1) 9=; m = 2; 3; : : : ;1 � r � m� 1 ;1 � s � r :The theorem was proven by Friedan-Qiu-Shenker by a careful analysis of the geometry of lines(c(m); �r;s(m)) in the (c;�) plane. This, in conjunction with the Kac determinant formula,allowed subsequent elimination of portions of the (c;�) plane were negative norm vectors appear,by an induction on N . At the end, only the points listed above were left. Goddard-Kent-Oliveconstructed explicitly unitary irreducible HW representations of the Virasoro algebra for theabove series of (c;�) employing the so called "coset construction".All unitary HW representations integrate to projective unitary representations of Diff+(S1)in the Hilbert space completion of Hc;� .All unitary representations M of the Virasoro algebra s. t. (the closure of) L0 is a positiveself-adjoint operator with a discrete spectrum of �nite multiplicity in the Hilbert space completionM of M is essentially isomorphic to a direct sum of unitary representations (the isomorphismmay require a di�erent choice of the common invariant dense domain for Ln's in M ). We shallsee in the next section that in CFT the operators Sq = qL0 �q ~L0 should be trace class for jqj < 1from which it follows that L0 and ~L0 have a discrete spectrum of �nite multiplicity. Hencethe Virasoro algebra representations which appear in CFT are direct sums of the unitary HWrepresentations.The algebra V ect(S1)�V ect(S1) , and hence also V ir�V ir acts naturally on the space ��~�37



of (�; ~�)-forms f (dz)�(d�z) ~� on D n f0g by Lie derivatives:ln f = ��(n+ 1)znf � zn+1@zf ; �ln f = � ~�(n+ 1) �znf � �zn+1@�zf :The commutation relations (62) and (63) express the fact that the operators 'l intertwine theaction of V ir�V ir in H1 � H and H1
��l ~�l . This gives a representation theory interpretationof the primary �elds of CFT.6. Segal's axioms and vertex operator algebrasUp to now we have studied QFT on closed Riemann surfaces. Let us consider now a compactRiemann surface � (connected or disconnected) with the boundary composed of the connectedcomponents Ci , i 2 I . We shall parametrize each Ci in a real analytic way by the standardunit circle S1 � C . Components Ci may be divided into \in" and \out" ones, depending onwhether the parametrization disagrees or agrees with the orientation of Ci inherited from �.This induces the splitting I = Iin [ Iout of the set of indices i . We may invert the orientationof Ci by composing its parametrization with the map z 7! z�1 of S1 . To � with parametrizedboundary, we may uniquely assign a compact surface �̂ without boundary by gluing a copyof disc D to each boundary component Ci with i 2 Iin and a copy of disc D0 to each Ciwith i 2 Iout . Conversely, given a closed Riemann surface �̂ with holomorphically embeddeddisjoint discs D and D0 (\local parameters"), by removing their interiors we obtain the surface� with boundary parametrized by the standard circles f jzj = 1g . We shall call a metric hon � (compatible with its complex structure) at at boundary if, for each i , it is of the formjzj�2jdzj2 in the local holomorphic coordinate around Ci extending its parametrization. We shallconsider only such metrics on surfaces with boundary.First, let us note that a metric  on � and metrics i on D , all at at boundary, give riseby gluing to the metric ~ = (_i2Iini) _  _ (_i2Iout#�i)on �̂ . It follows from the local scale covariance formula (4) that the combination of partitionfunctions Z~ Yi2I (Z#�i_i)�1=2 � Z (68)is independent of (the conformal factors) of i . Besides, the transformation of Z under  7! e�with � vanishing around the boundary is still given by eq. (4). It is sensible to call Z thepartition function of the Riemann surface � with boundary. Let Yi 2 H0 . Consider the matrixelements de�ned by(
i2IoutYi ; A�; 
i2Iin Yi ) = Z h Yi2Iout(�Yi) Yi2Iin Yi i : (69)We shall postulate that the above formula de�nes operator \amplitudes" A�; mapping the tensorproducts of the CFT Hilbert spaces associated to the boundary components of �. In particular,for � without boundary, eq. (69) should be read as the identity A�; = Z . Amplitudes A�;(or rather their holomorphic counterparts) were considered as the de�ning data of CFT in thework of Segal. Let us state the Segal axioms (adapted to the real setup).38



(i) We are given the Hilbert space of states H with an anti-unitary involution I and for eachcompact Riemann surface (with parametrized boundary or without boundary, connectedor disconnected) the operator6A�; : Oi2IinH �! Oi2IoutH ; (70)which we assume trace class.(ii) If � is a disjoint union of �1 and �2 , thenA�; = A�1; 
A�2; :(iii) If D : �1 ! �2 is a di�eomorphism reducing to identity around the (parametrized) bound-ary then A�2; = A�1;D� :(iv) If �� denotes the Riemann surface with conjugate complex structure (and opposite orien-tation) then A��; = Ay�;(v) The inversion of boundary parametrization acts on the amplitude A�; by the isomorphismH �= H� induced by I in the corresponding Hilbert space factor.(vi) If �0 is obtained from � by gluing of the Ci0 and Ci1 boundary components thenA�0; = tri0;i1 A�; ;where tri0;i1 denotes the partial trace in the H factors corresponding to Ci0 and Ci1 .(vii) For any function � on � vanishing around the boundaryA�;e� = e c96� (kd�k2L2+4R� �r dv) A�;In the approach in which we start from the data specifying partition functions and correlationfunctions on surfaces without boundaries, property (i), in conjunction with eq. (69), imposescertain new regularity conditions on the correlation functions. Property (ii) may be viewed asa de�nition of the amplitudes for disconnected surfaces. All the remaining properties exceptfor (vi) follow easily. The gluing axiom brings an essential novel element allowing to comparethe correlation functions of di�erent surfaces (with di�erent complex structures and di�erenttopologies). In the heuristic approach employing functional integrals, it expresses locality of thelatter. Let us explain this point in more detail.6the empty tensor product should be interpreted as C39



We shall think about the partition function of a QFT on a closed Riemann surface as beinggiven by a functional integral of the typeZ = Z e�S�(�) D� (71)where S�(�) is the action functional and D� = Qx2� d�(�(x)) is the formal volume element onthe space of �elds. On a Riemann surface with boundary �, we could consider an analogousfunctional integral with �xed boundary values �jCi � 'i of the �elds:A�; (('i)i2I) = Z�jCi='ie�S�(�) D� : (72)It is a function of the �eld boundary values. The space of functionals F(') of the �elds on thecircle with the formal L2 scalar product may be thought of as the Hilbert space H of states ofthe system (we have seen a concrete realization of this idea for the free compacti�ed �eld). Wemay then interpret the functional A�; (('i)i2I) as the kernel of an operator mapping the tensorproduct of state spaces, one for each \in" component of the boundary, to the similar product forthe \out" components.The space H may be equipped with a formally anti-unitary involution I , (IF)(') � F('_)where '_(z) � '(z�1) which allows to turn the operators in H into bilinear forms and viceversa and to identify the operator amplitudes when we invert the orientation of some boundarycomponents.The basic formal property of the functional integral (72) is that one should be able to computeit iteratively. Suppose that the surface �0 is obtained by identifying a (parametrized) \out"component Ci0 with an \in" component Ci1 of a (connected or disconnected) surface �. Thefunctional integral on �0 may be done by keeping �rst the value of the �eld on the gluing circle�xed and integrating over it only subsequently. In other words, the equalityZ�jCi='i;i6=i0 ;i1 e�S�0(�) D� = Z � Z�jCi='i; i6=i0 ;i1�jCi0 ='0=�jCi1e�S�(�) D��D'0should hold and this is exactly a formal version of the gluing property (vi).What is the functional integral interpretation of eq. (69)? One should interpret vectors Y 2 Has corresponding to functionsFY (') = (Z#�_)�1=2 Z�j@D=' Y e�SD(�) D�of �elds on the circle. The complex conjugate functions are then given by the D0-functionalintegrals (Z#�_)�1=2 Z�j@D=' �Y e�SD0 (�) D�40



so that the formal L2 scalar product for the functions of �elds ' on the boundary circle givesZ FY (') FY (')D' = (Z#�_)�1 Z (�Y ) Y e�SD[D0(�) D�= h (�Y )Y i = (Y ; Y )( has been assumed locally at above). Formula (69) follows now by iterative calculation of thefunctional integralZ~ h Yi2Iout(�Yi) Yi2Iin Yi i = Z Yi2Iout(�Yi) Yi2Iin Yi e�S�̂(�) D�by �rst �xing the values of � on @� and then integrating over them.Any two-dimensional QFT should give rise to operator amplitudes with properties (i) to (vi).In particular, the so called P (�)2 theories corresponding to the actions S(�) � k�k2L2+R P (')dv ,where P is a bounded below polynomial, give undoubtly rise to such structures. The specialproperty, which distinguishes the CFT models from other two-dimensional QFT's is, of course,the local scale covariance (vii) (conjecturally, special limits of the P (�)2 theories should possessthis property).As already stressed, if we consider eq. (69) as the de�nition of the amplitudes A�; then theproperties (i) to (vii) above become further requirements on the correlation functions. The pointof Segal was, however, that the amplitudes A�; satisfying (i) to (vii) may be taken as the de�ningobjects of CFT from which the rest of the structure, like the Virasoro algebra action, the primary�elds and their correlation functions, etc. may be extracted. In this sense, the requirements (i)to (vii) may be viewed as the basic axioms of CFT, encapsulating its mathematical structure.Let us briey sketch Segal's arguments. They require looking at the amplitudes A�; for thesimplest geometries.DiscsFor � = D , AD; 2 H and (Z#�_)�1=2AD; is a metric independent vector which, accordingto eq. (69) we should interpret as the vacuum vector:(Z#�_)�1=2AD; � 
 : (73)Similarly, AD0;#� is the linear functional on H ,(Z#�_)�1=2AD0;#� = (
 ; � ) :It follows from the properties (iv) and (v) that 
 = I
.AnnuliLet us pass to surfaces � with annular topology. Under gluing of an \out" and an \in"boundary components of two such surfaces their amplitudes A�; form a semigroup due to theproperty (vi). This is the semigroup which encodes the Virasoro action on H . In particular,for the annuli � = f jqj � jzj � 1g = Cq with the \out" boundary parametrized by z 7! z and41



the \in" one by z 7! qz , using the metric 0 = jzj�2jdzj2 on Cq , we obtain a semigroup almostidentical to the semigroup (Sq ) considered before(Y 0 ; ACq;0 Y ) = Z0 h (�Y ) SqY i = Z0 (Y 0 ; SqY ) (74)where Z0 is given by eq. (68).Problem 5. Show that Z0 = (q�q)�c=24 .The immediate consequence of this relation and of eqs. (74) and (47) is the identityACq;0 = qL0�c=24 �q ~L0�c=24 : (75)Note that the mapping z 7! eiz establishes a holomorphic di�eomorphism between the �nitecylinder C� = f z j 0 � Imz � 2��2 g=2�Z and Cq where q = e2�i� . The pullback of the metric0 by z 7! eiz is jdzj2 . The amplitude AC� ; jdzj2 is equal to e�2��2H e2�i�1P , where � = �1+ i�2and H is the Hamiltonian of the theory quantized in periodic volume R=2�Z and P is themomentum operator. Comparison with eq. (75) yieldsH = L0 + ~L0 � c12 ; P = L0 � ~L0 :The requirement that the amplitudes be trace class operators implies that L0 and ~L0 have dis-crete spectrum with �nite multiplicity, so that their eigenvalue zero corresponding to eigenvector
 is isolated (with possible multiplicity). Note, that energy of the vacuum state becomes equalto c12 now. If we work on the space R=LZ instead, the energy spectrum is multiplied by 2�Lso that the lowest energy becomes �c6L . This permits to calculate (following Cardy) the centralcharge of the conformal models from the �nite size dependence of the ground state energy in theperiodic interval.Gluing together the boundaries of C� , one obtains the elliptic curve T� = C=(Z + �Z)(with metric 4�2jdzj2). The properties (iii) and (vi) of the operator amplitudes imply then thefollowing expression for the toroidal partition functionZ(� ) � AT� ; jdzj2 = tr qL0�c=24 �q ~L0�c=24 : (76)which is necessarily a modular invariant function (recall why?). The modular invariance of thepartition functions of CFT has played an important role in the search and the classi�cation ofmodels.The amplitudes for other annular surfaces allow to obtain the action of other generators of thedouble Virasoro algebra in the Hilbert space of states H . If D 3 z 7! f(z) 2 D is a holomorphicembedding of D into its interior preserving the origin then �f := D n f(int(D)) is in a naturalway an annulus with parametrized boundary (one \in" f(@D) and one \out" @D component).Such annuli form a semigroup. In particular, for fq;�;n(z) = 7! qz@z e�zn+1@z z for n > 0 , jqj < 1and j�j su�ciently small, A�fq;�;n ; = Z e�Ln qL0 e ��~Ln �q ~L042



encoding the action of the operators Ln , ~Ln for n > 0 (the complex-conjugate annuli ��fq;n;�give amplitudes encoding Ln , ~Ln for n < 0). The Virasoro HW vectors Xl 2 H of conformalweights (�l; ~�l) may be characterized by the equalitiesZ�1 A�f ; Xl = (df(0)dz )�l (d �f(0)d�z ) ~�lXl : (77)In particular, L0Xl = �lXl , LnXl = 0 for n > 0 and similarly for ~Ln's.Each Virasoro HW vector gives rise to a primary �eld and the correlation functions of theprimary �elds may be recovered from the operator amplitudes by the following construction. Let(x1; : : : ; xn) be a sequence of non-coincident points in the surface �̂ without boundary. Specifylocal parameters at points xj by embedding discs D into �̂ so that their images centered atpoints xj do not intersect. �̂ may be then viewed as a surface � with boundary capped withdiscs D . The correlation functions of the primary �elds 'li corresponding to the HW vectorsXli may be de�ned in a locally at metric by the formulah�l1(x1) � � � �ln(xn) i = 1Z A�; 
iXli (78)(in accordance with relation (69)). The characteristic property (77) of the HW vectors assuresthat the left hand side is unambiguously de�ned as a �lj ; ~�lj-form in variable xj :Problem 6. Using relation (77) and the gluing axiom show that the right hand side of eq. (78)picks only a factor ( df(0)dz )�lj ( d �f(0)d�z ) ~�lj under the change z 7! f(z) of the j th local parameter ofsurface �̂ .As we see, the relation between the primary �elds and the HW vectors �l 7! 'l(0)
, discoveredbefore is one to one (if we include among the primary �elds the trivial \identity" �eld whoseinsertions have no e�ect in correlation functions and which corresponds to the HW vector 
).PantsMore generally, it is possible to associate to each vector X in the Hilbert space of states H ,in the domain of q1�L0 �q1�~L0 for some q1 with jq1j < 1 , an operator-valued �eld '(X ; w; �w)de�ned for 0 < jwj < 1 in the following way. For 0 < jqj < jwj � jq1j < 1 � 2jq1j , consider theRiemann surface Pq;q1;w = f jqj � jzj � 1; jz � wj � jq1j gwith the \out" boundary component f jzj = 1 g parametrized by z 7! z and the \in" ones byz 7! qz and by z 7! w + q1z . Such a surface is often called \pants" for obvious reasons. Theoperator '(X ;w; �w) will be essentially de�ned as the amplitude of the pants. More exactly, weshall put '(X ; w; �w)Y = 1Z APq;q1 ;w ; (q�L0 �q�~L0 Y 
 q1�L0 �q1�~L0 X ) :Note that '(X ; w; �w)Y is independent of q1 and of q as long as X is in the domain ofq1�L0 �q1�~L0 and Y in the domain of q�L0 �q�~L0 .43



Problem 7. (a). Show that '(X ; 0) 
 � limw!0 '(X ; w; �w) 
 = X .(b). Show that for a HW vector Xl , '(Xl; w; �w) coincides with the operator 'l(w; �w) assignedto the primary �eld �l corresponding to Xl .(c). Show that '(L�2
; w; �w) = T (w) and that '(~L�2
; w; �w) = �T ( �w) .The operators '(X ; w; �w) satisfy an important identity'(Y ; z; �z) '(X ; w; �w) = '('(Y ; z � w; �z � �w)X ; w; �w) (79)holding for 0 < jwj < jzj , 0 < jz � wj < 1 . Eq. (79) follows from the two ways that one mayobtain the disc with three holes by gluing two discs with two holes.Problem 8. Prove eq. (79) using the gluing property (vi) of the operator amplitudes and treatingwith care the normalizing factors Z �1 .The relation (79) may be viewed as a global form of the OPE's, the local forms following from itby expanding the vector '(Y ; z � w; �z � �w)X into terms homogeneous in z � w and �z � �w .Since any Riemann surface can be built from discs, annuli and pants the general amplitudesA�; may be expressed by the Virasoro generators and operators '(X ; w; �w) . This permitsto formulate the basic mathematical structure of CFT in an even more economic (and morealgebraic) way than through the amplitudes A�;h with the properties (i) to (vii), getting ridof the Riemann surface burden. Instead, one obtains a set of axioms for the action of theV ir � V ir algebra and of the vertex operators '(X ; w; �w) in the Hilbert space H , with therelation (79), the main consistency condition, playing a prominent role. That was, essentially,the idea which, in the holomorphic version of CFT, has led to the concept of a vertex operatoralgebra developed by Frenkel-Lepowsky-Meurman and by Borcherds. The latter, by studyingthe algebras arising in the context of toroidal compacti�cations (on Minkowki targets) was ledto the concept of generalized Kac-Moody or (Borcherds) algebras which promise to play animportant role in physics and mathematics.ReferencesThe operator product expansion in the two-dimensional CFT is a starting point of the seminalBelavin-Polyakov-Zamolodchikov paper in Nucl. Phys. B 241 (1984), p. 333, see also Eguchi-Ooguri: Nucl. Phys. B 282 (1987), p. 308.The treatment of the operator formalism based of the notion of physical positivity was adaptedfrom Osterwalder-Schrader: Commun. Math. Phys. 31 (1973), p. 83 and 42 (1975), p. 281.For the theorem about the unitary representations of the Virasoro algebras see Friedan-Qiu-Shenker, Phys. Rev. Lett. 52 (1984), p. 1575 and Commun. Math. Phys. 107 (1986), p. 535and also Goddard-Kent-Olive, Commun. Math. Phys. 103 (1986), p. 105.For the Segal axiomatics of CFT see G. Segal's contribution to "IXth International Congressin Mathematical Physics", Simon-Truman-Davies (eds.), Adam Hilger 1989 and G. Segal: "Thede�nition of conformal �eld theory," preprint of variable geometry. A general discussion of CFT44



designed for the mathematical audience may be found in Gaw�edzki: Asterisque 177/178 (1989),p. 95.Vertex operator algebras are the subject of Frenkel-Lepowsky-Meurman's book \Vertex Op-erator Algebras and the Monster", Academic Press 1988, see also a review by Gebert in Int. J.Mod. Phys. A8 (1993), p. 5441.
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Lecture 3. Sigma modelsContents :1. 1PI e�ective action and large deviations2. Geometric sigma models3. Regularization and renormalization4. Renormalization group e�ective actions5. Background �eld e�ective action6. Dimensional regularization7. Renormalization of sigma models to 1 loop8. Renormalization group analysis of sigma models1. 1PI e�ective action and large deviationsIt will be useful to describe another relation between a �eld theoretic and a probabilistic concept.Consider a positive measure d�(�) = e�S(�) D� :on a (�nite dimensional) euclidean space E . We shall assume that S(�) grows faster than linearlyat in�nity and, for convenience, that the measure is normalized. The characteristic functional ofd� eW (J) = R eh� ;J i d�(�)is then an analytic function of J in the complexi�ed dual of E . Let N� = PN1 �j be thesum of N independent random variables equally distributed with measure d� . The probabilitydistribution of N� is PN (�) = R �(N� � NPj=1 �j) NQj=1 d�(�j)= R DJ R e�hN��P �j ;J i NQj=1 d�(�j) = R e�N h� ;J i+NW (J) DJ : (2)where the J -integration is over an imaginary section of E�C with DJ denoting the properlynormalized Lebesque measure on it7. We shall be interested in the behavior of PN for large N .It is not di�cult to see thatPN (�) = eN infJ2E� [�h� ;J i+W (J) ] + o(N) � e�N�(�) + o(N) : (3)7another reading of eq. (2) says that the N -fold convolution becomes the N th power in the Fourier language46



In probability theory,�(�) = supJ2E� [ h� ; J i � W (J) ] = [ h� ; J i � W (J) ]�����=W 0(J) (4)(W 0 denotes the derivative of W ) is called the \large deviation (rate) function". It is the Legendretransform of W (J) which is a strictly convex function on E� . It controls the regime whereP �j = O(N) as opposed to the central limit theoremwhich probes P(�j�h�i) = O(N1=2) whereh�i is the mean value of �j . Since �0(�) = J , the minimum of � occurs at � = W 0(0) = h�i .The central limit theorem sees only the second derivative of � at h�i :limN!1 PN (h�i +N�1=2 ) � e� 12 �00(h�i)( 2) :W may be recovered from � by the inverse Legendre transform:W (J) = sup�2E [ h� ; J i � �(�) ] = [ h� ; J i � �(�) ]����J=�0(�) : (5)We may compute W (J) and �(�) as formal power series introducing a coe�cient h� (the Planckconstant), Taylor expanding S(�) and separating the quadratic contribution to it:eW (J) = Z e 1h� [h� ;J i�S(�)] D� ����h�=1= �e� 1h� S(0) Z e 1h� h� ; J�S0(0)i� 13!h� S000(0)(�3)� :::::: d�h�S00 (0)�1 (�) Z e� 12h� S00(0)(�2) D� �����h�=1 (6)where the Gaussian measured�h�S00(0)�1 (�) = e� 12h� S00(0)(�2) D�R e� 12h� S00(0)(�2) D� : (7)Expanding the exponential under the d� integral into the power series and performing theGaussian integration, we obtain an expansion in powers of h� which, as discussed in Kazhdan'slectures, gives upon exponentiation the relationeW (J) = �e� 1h� S(0) + Pvacuumgraphs Gh�#floops of Gg�1 IG(J;S) Z e� 12h� S00(0)(�2) D� �����h�=1 (8)where, by de�nition, graphs G are connected graphs8 made of 1-leg vertices J or �S 0(0) , 3-legvertices �S000(0) , 4-leg vertices �S(4)(0) etc., with propagators S 00(0)�1 on the internal lines9and no propagators on the external lines. The vacuum graphs are the ones without externallines. The amplitudes IG(J; S) are associated to the graphs in a natural way, with the symmetryfactors of the graphs included. If S is a polynomial and S 0(0) = 0, then there is only a �nitenumber of graphs with a given number of J -vertices and a given number of loops and we may8recall that the exponential of the sum over connected graphs is the sum over connected and disconnectedgraphs9we count lines ending at the 1-leg vertices as internal47



view W (J) as a formal series in J and in the number of loops. More exactly, comparing the leftand the right hand sides of eq. (8), we infer thatW (J) = �S(0) + Pvacuumgraphs G IG(J; S) + ln (R e� 12 S00(0)(�2)D�) :As discussed by Kazdan, by cutting all the lines of the graphs whose removal makes the graphdisconnected, we obtain the second representation for W (J) :W (J) = ��(0) + Xvacuumtrees T IT (J;�)where the \1PI e�ective action" �(�) is de�ned by its formal Taylor series�(0) = S(0) � P1PI vacuumgraphs G IG(S) � ln (R e� 12 S00(0)(�2)D�); �0(0) = � X1PI graphs Gwith 1 external lineIG(S) ;12 �00(0) = 12 S00(0) � P1PI graphs Gwith 2 external linesIG(S) ; 13! �000(0) = � X1PI graphs Gwith 3 external linesIG(S) ; (9): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :where \1PI" stands for (amputated) 1-particle irreducible graphs without J -vertices. Rewritingeq. (8) with S replaced by �, i.e. as an expansion for R e 1h� [h� ;J i� �(�)] D� , but keeping only theleading terms at h� small, we obtain �nally the equalitysup�2E [ h� ; J i � �(�) ] = ��(0) + Xvacuumtrees T IT (J;�) = W (J) :Comparing this to eq. (5) we see that eqs. (9) provide a perturbative interpretation of the largedeviation function �.2. Geometric sigma modelsWe have already discussed a simple way to write down a conformal invariant action for maps� : � ! M where (�; ) is a Riemann surface and (M;g) a Riemannian manifold. Thefunctional Sg(�) = 14� kd�k 2L2 = i2� Z� gij(�) @�i ^ �@�j (10)(summation convention!) depends only on the conformal class of  . We could add to Sg(�) alsoa \topological" term Stop(�) = i4� Z� ��! = i2� Z� bij(�) @�i ^ �@�j (11)involving a 2-form ! = bij(�)d�i ^ d�j on M which does not depend on  but only on theorientation of �. Renormalizability forces addition of two more terms to the action which breakclassical conformal invariance:Stach(�) = 14� Z� u � � dv and Sdil = 14� Z� w � � r dv (12)48



where u;w are functions on M called, respectively, the tachyon and the dilaton potentials10, dvstands for the volume measure and r for the scalar curvature of �.One may also consider a supersymmetric version of the model (see Problem set 3) with theaction SSUSYg (�) = 12�i Z gij(�)D� ~D� dz ^ d�z ^ d� ^ d~� (13)where the super�eld � = � + � + ~� ~ + �~�F :and D = @� + �@z , ~D = @~� + ~�@�z . In components, after elimination of the auxiliary �eld Fthrough its equation of motion, one obtainsSSUSYg (�; ; ~ ) = i2� Z �gij(�) @z�i @�z�j � gij(�) � irz j + ~ ir�z ~ j�� 12 Rijkl(�)  i j ~ k ~ l�dz ^ d�z (14)where rz j = @z i + �jkl @z�k  l with �jkl = f jklg standing for the Levi-Civita connectionsymbols and similarly for r�z ~ i and where Rijkl denotes the curvature tensor of M . Additionof the 2-form ! = bij(�)d�i ^ d�j term corresponds to the change gij 7! gij + bij in eq. (13). Inthe component formula (14) it results in the same replacement of gij and, additionally, in thereplacement of the Levi-Civita symbols in rz j (r�z ~ j ) by symbols of a metric connection withtorsion f jklg� 32 gjmHklm , respectively, where Hklm is the antisymmetric tensor representing d! .The curvature Rijkl in eq. (14) becomes that of the connection with the plus sign11.The two-dimensional �eld theory with action (10) is usually called a sigma model. Thestationary points of S(�) are harmonic maps from � to M and correspond to the classicalsolutions. Can one quantize sigma models by giving sense to functional integralsZMap(�;M) F (�) e�S(�) D� (15)with S = Sg + Stop + Stach + Sdil where for F (�) one may for example take Qj uj(�(xj)) forsome functions uj on M ? We have already seen that this was easily doable for M a torus witha constant metric and a constant 2-form ! , with vanishing (or constant) tachyon and dilatonpotentials. The corresponding functional integral was essentially Gaussian and the resultingtheory was a little decoration of the free massless �eld. Here we would like to examine the casewith an arbitrary topology and geometry of the target by treating the functional integrals ofthe type (15) in perturbation theory and also, possibly, going beyond the purely perturbativeconsiderations employing powerful methods of the renormalization group approach to quantum�eld theories.10the names come from the string theory context11it is equal to Rklij for the minus sign connection 49



3. Regularization and renormalizationWe may anticipate problems with the de�nition of functional integrals (15) even in a perturbativeapproach. We shall attempt to remove these problems by using freedom to change the parametersof the theory, namely the metric on M and the tachyon and dilaton potentials (for the sake ofsimplicity, we shall discard the topological term in the action). The strategy to make sense offunctional integrals of type (15) will then be as follows:1. (regularization) we modify the theory introducing a (short distance) cuto� � into it tomake functional integral exist;2. (renormalization) we try to choose the metric g and the tachyon and dilaton potentialsentering the action in a �-dependent way so that the cuto� versions of integrals (possibly afterfurther multiplication by a �-dependent factor) converge to a non-trivial limit.There are many ways to introduce a short distance (ultra-violet) cuto� into the theory. Tosimplify the problem further let us assume that � is the periodic box [�0; L]2 (that will do awaywith the contribution of the dilaton potential). One possibility to introduce the UV cuto� is toconsider the lattice version of the sigma model. Let �� � [0; L]2 be composed of points withcoordinates in 1�Z where �L is a power of 2 . The lattice version of � : [0; L]2 !M is the map� : �� !M and for the cuto� action we may putS�g;u(�) = 18� Xx;y2��jx�yj=��1 d 2g (�(x); �(y)) + 14� Xx2����2u(�(x))where dg stands for the metric distance on M . If � is the restriction of a �xed smooth (periodic)M -valued map on [0; L]2 and u is continuous then in the limit � ! 1 we recover the valueof the original action Sg + Stach � Sg;u . The cuto� version of the normalized integral (15) withF (�) = Quj(�(xj)) becomes nowR nQj=1 uj(�(xj)) e�S�g;u(�) Dg�R e�S�g;u(�) Dg� (16)where Dg� = Qx2�� dvg(�(x)) with dvg denoting the metric volume measure on M . The integralis �nite e.g. for compact M and uj , say, continuous. The lattice sigma models for M = SN�1with a metric proportional to that of the unit sphere in RN are essentially well known \spin"models in classical (as opposed to quantum) statistical mechanics (N = 1 corresponds to theIsing model, N = 2 to a version of the XY model, N = 3 to a slightly modi�ed classicalHeisenberg model; u proportional to a coordinate in RN describes the coupling to the magnetic�eld).We would like to study if, after renormalization, the cuto� may be removed in the correlationfunctions12 (16). More precisely we would like to show that the limitslim�!1 R nQj=1Z(�)uj(�(xj)) e�S �g(�);u(�)(�) Dg(�)�R e�S �g(�);u(�)(�) Dg(�)� (17)12from the point of view of statistical mechanics which reformulates the problem in terms of the system with a�xed lattice spacing, this is a question about the large distance behavior of correlation functions50



exist for a cuto�-dependent linear map13 Z(�) on the space of functions on M and for cuto�-dependent choices of the metric g(�) and of the tachyon potential u(�) on M . We wouldalso like to parametrize possible limits (17) de�ning the correlation functions of the quantumtwo-dimensional sigma models.4. Renormalization group e�ective actionsOne could study the questions raised above �rst by perturbative methods applied directly tothe lattice correlation functions (16). It is important, however to set the perturbative scheme inthe way that does not destroy the geometric features of the model (i.e. in a way covariant underdi�eomorphisms of M ). One way to assure this is to study, instead of correlation functions,objects known under the name of renormalization group e�ective actions.Fix � such that �=� is a power of 2 and for y 2 �� denote by B(y) the set of x 2 �� in thesquare y+ [0; ��L[2 , Call a point � 2M a barycenter of a set of points �j 2M ; j = 1; : : : ; N; if� extremizes Pj d2g(�; �j) . Clearly, if M is a euclidean space then � = 1NPj �j . Suppose thatwe �x a map � : �� !M and compute the integrale�S �eff (�) D� = Z Yy2�� �(12r�(y) Xx2B(y)d2g(�(y); '(x))) e�S�g;u(') Dg': (18)The right hand side is naturally a measure on M�� . It essentially computes the probabilitydistribution of the barycenters �(y) of \spins" '(x) with x in blocks B(y) 14. S �eff(�) , thelogarithm of the the density of the right hand side w.r.t. to some reference measure D� onM�� , is called the (\block spin") renormalization group (RG) e�ective action on scale � .The renormalizability problem may now be reformulated as the question about existence ofthe �!1 limit of S �eff , more exactly, of the normalized measured� �eff (�) = e�S �eff (�) D�R e�S �eff (�) D� (19)on M�� , if we choose \bare" g and u in the �-dependent way and keep � �xed. With themodi�cation of the de�nition of S �eff described in the footnote, one may show that the twoformulations of the renormalizability problem are essentially equivalent.The limiting measures d� �eff may be viewed as describing the � =1 theory averaged overvariations of the �elds on distance scales � ��1 . Pictorially, they describe the system viewedfrom far away when we do not distinguish details of length <� 1� . An important observation atthe core of the RG analysis is that this averaging may be done inductively by �rst eliminating thevariations on the smallest scales, then on the larger ones, and so on until scale � is reached15. In13recall that even the free �eld case required a multiplicative renormalization of the correlation functions ofexponents of �eld �14this would hold if the barycenters were unique and with the normalizing factor 1R �( 12r�(y) Px2B(y)d2g(�(y);'(x))) Dg�under the integral on the right hand side of eq. (18)15this is not exactly the case for our de�nition of S �eff but ignore this for a moment51



the in�nite volume (L =1 ), the process may be viewed as a repeated application of a map ona space of unit lattice actions. If under the iterations the e�ective actions are driven to a simpleattractor (like an unstable manifold of a �xed point) then the renormalization consists of choosingthe initial \bare" actions so that the � =1 e�ective actions S�eff end up on the attractor. In thevicinity of a �xed point this would be possible if the family of the bare actions (parametrized bybare couplings) crosses transversally the stable manifold. The renormalized couplings parametrizethen the unstable manifold (a drawing would be helpful here). This dynamical system viewof renormalization developed by K. G. Wilson is extremely important and will hopefully beexplained in much more details in future lectures.We have suppressed in the notation the dependence on the size L of the box. If the choiceof g(�) and u(�) involved in the � ! 1 limit can be done in an L independent way, weautomatically obtain a family of measures parametrized by � and L . The measures with theproduct L� �xed (to a power of 2) are related by the rescaling of space-time distances16. If thein�nite volume limit L!1 of the theory exists, � becomes a continuous parameter. Supposethat the e�ective actions S �eff of possible continuum limits (i.e. the attractor of the RG mapin the dynamical system view) may be parametrized by (dimensionless) \renormalized" metricsg and tachyon potentials u . You should think that S �eff is equal to S �g;�2u plus less important(higher dimension) terms separated by a precise rule. We would say then that the theory isrenormalizable by a metric and a tachyon potential renormalization. This is the scenario realizedin perturbation theory, see below. In such a situations the �; L =1 theories are characterizedby the \running" metric � 7! g(�) and tachyon potential � 7! u(�) describing S �eff on di�erentscales � in the passive view of the scale-dependence of the renormalized theory. In the activeview, the �-dependence of g and u is generated by the action of rescalings of distances on thelimiting theory. The in�nitesimal scale transformations generate a vector �eld �@g + @u in thespace of (g; u) de�ned by �(g; u) = � @@� g ; (g; u) = � @@� u: (20)�(g; u) and (g; u) are called in the physicists jargon the RG \beta" and \gamma functions".In the dynamical system language, �@g+@u is a vector �eld on the attractor of the RG map andit extends the map to a ow. The importance of the RG functions lies in the fact that, computedin perturbation expansion, they allow to go beyond it, providing for example a consistency checkon the latter: by solving the RG eqs. (20) with � and  given by few perturbative terms wemay check whether the trajectories � 7! (g(�); u(�)) stay or are driven out for large � (that isat short distances) from the region of the (g; u)-space where the perturbative calculation may betrusted. It is clear that the zeros of the (�; ) vector �eld should play an important role. Theycorrespond to scale invariant (and hence conformal invariant) �eld theories and, in the dynamicalsystem picture, to �xed points of the RG map (since they lie already on the attractor).How to generate the perturbation expansion for the RG e�ective actions e�S �eff ? A helpfulobservation is that the delta-function in the de�nition (18) can be rewritten in simple terms ifwe use the exponential map e : T�M !M .16i. e. of the metric on � 52



Problem 1 (geometric). Show that for vectors �j in a small ball in T�M ,12r�( NXj=1 d2g(�; e�j�) = NXj=1 �j :It follows that � is a barycenter of the set of points fe�j�g i� P �j = 0.Substituting in eq. (18) '(x) = e�(x)�(y) for �(x) 2 T�(y)M if x 2 B(y) , or, in a shorthandnotation, ' = e� ~� where ~�(x) = �(y) for x 2 B(y) , we obtain17e�S �eff (�) = � Z Yy2�� �(Xx2B(y)�(x)) e� 1h� S�g;u(e� ~�) Dge� ~������h�=1 : (21)Note that the lattice �eld � takes values in a vector space f� j �(x) 2 T�(y)M ; Px2B(y)�(x) = 0g.The loop expansion for S �eff may just be generated in the standard way by expanding in powers of� on the right hand side of eq. (21) all terms except for the quadratic contribution to Sg;u whichis used to produce a Gaussian measure. At each loop order the result will be invariant under thesimultaneous action of di�eomorphisms of M on � , g and u . When �!1 ; divergences willappear in the perturbative expressions. The perturbative renormalizability of the theory may bestudied by replacing the \bare" g and u on the right hand side of eq. (21) byg(�) = g + 1Xn=1 h�n �gn(g; u;�=�) ; u(�) = �2  u + 1Xn=1 h�n �nu(g; u;�=�)! : (22)We may attempt to �x the above series by choosing some way to extract the renormalized metricg and the renormalized potential u from e�ective actions S �eff . We would then like to show thatthe above substitution cancels the �!1 divergences in each loop order of S �eff resulting in afamily of perturbative RG e�ective actions parametrized by \running" metric g(�) and tachyonpotential u(�) . Di�erentiation of the series (22) over ln� with g(�); u(�) �xed would thenproduce in the �!1 limit the loop expansion for the beta and gamma RG functions.5. Background �eld e�ective actionIn practice, the lattice perturbative calculations are prohibitively complicated. It would beeasier to work with continuum regularization and renormalization which allow to calculate thediagram amplitudes by momentum space integrals and to make use of rotational invariance. Wehave seen in Witten's lectures on perturbative renormalization of the scalar �eld theories withthe �3 or �4 interactions that it was convenient to analyze directly the \1PI e�ective action"� given by the Legendre transform of the free energy functional W . The latter was de�ned asthe logarithm of the integral of type of (15), with F (�) = eh�;J i . The de�nition of both Wand �, however, as well as their perturbative analysis, used heavily the linear structure in thespace of maps from the space-time to the target M , inherited from the linear structure of M .Such structure is missing if M is a general manifold. It is possible, nevertheless, to introduce17the fact that the exponential parametrization may work only locally does not impede the perturbative analysis53



for sigma models an e�ective action mimicking the construction of the large deviations function(see eq. (3)) and somewhat similar in spirit to the RG e�ective actions for the lattice versionof sigma models discussed in the previous section. Instead of �xing the block barycenters in asingle lattice theory, we shall take N independent copies of continuum theories with �elds �jand shall �x for each x the barycenters �(x) of �j(x) de�ning the functionalPN (�) = Z Yx �(12r�(x) NXj=1 d2g(�(x); �j(x))) Yj e�Sg;u(�j) Dg�j (23)by a formal functional integral. Note that the right hand side reduces to a well de�ned integralfor a lattice version of the theory. For a map � : � ! M and for a section � of the pullback��TM of the bundle tangent to M , denote by e�� the map from � to M whose value at pointx is obtained by applying the exponential map to �(x) 2 T�(x)M . Reparametrizing in eq. (23)�j = e�j� , we obtain PN (�) = Z �( NXj=1 �j) Yj e�S(e�j�) D(e�j�) : (24)We may try to extract the \background �eld e�ective action" �b(�) from the leading con-tribution to PN at large N : PN (�) = eN �b(�) + o(N) : (25)It should be clear that �b(�) coincides then with the e�ective action ��(� = 0) of the �-�eldtheory (depending on � as a parameter) corresponding to the functional integralZ � e�S(e��) D(e��) : (26)Fields � take values in a vector space of sections of ��TM so that the perturbative treatmentof the �-theory is more standard. Note that only the geometric structure on M was used in theformal de�nition of �b(�) .We shall reformulate the renormalizability problem (17) for the second time as the questionabout existence of the � !1 limit of the regularized version of the background-�eld e�ectiveaction ��b (�) for a cuto�-dependent theory with the action Sg(�);u(�)(�) . We could regularizethe functional integral (24) by putting �elds �j on a lattice with spacing 1� while keeping �as a continuum �eld. This would not produce a big computational gain in comparison to theperturbative calculation of the RG e�ective actions. It is possible, however, to regularize theloop expansion of the background �eld e�ective action just by introducing an ultraviolet cuto�in the momentum space integrals for the 1PI vacuum amplitudes in the �-�eld theory whose �eldsform a vector space of sections of ��TM . �b;�(�) obtained this way will be covariant under thedi�eomorphisms of M in each order of the loop expansion. The perturbative renormalizationwill consist of choosing the \bare" parameters of the theory in a cutto�-dependent way as in eqs.(22) and such that the �!1 limit of ��b (�) exists order by order in the loop expansion. Theperturbative limits will be parametrized by the \running" metric g(�) and potential u(�) onM , with the change of � induced by rescaling of distances on �.54



6. Dimensional regularizationWe shall prove the perturbative renormalizability of the background �eld e�ective action in the2D sigma model only in the leading order of the loop expansion, concentrating instead on thediscussion of the renormalization group aspects of the 1 loop result. To avoid calculational (butnot conceptual) di�culties, we shall work in the at euclidean space-time � = E2 . We shall alsouse a speci�c scheme for regularization of divergent diagrams: the dimensional regularizationand a particular way to renormalize the theory (i. e. to chose g(�) and u(�)): the minimalsubtraction. Briey, the idea is to1. regularize the momentum space integrals by rewriting them as integrals into which thespace-time dimension D enters as an analytic (complex) parameter, then2. to calculate the integral for the values of D where it converges and, �nally,3. to analytically continue to the physical values of D extracting the pole parts of the resultat the physical dimension as the divergence to be removed by the renormalization.In order to gain some practice let us compare how the simplest divergent diagram of the4-dimensional �3 theory �O� is regularized and renormalized �rst in the more conventionalmomentum space regularization used in Witten's lecture and then in the dimensional regulariza-tion - minimal subtraction scheme. The momentum space amplitude Î(k) corresponding to the(amputated) graph was given by the integralÎD(k) = g24 Z d�q(q2 +m2)((q � k)2 +m2) = g24 Z 10 d� Z d�q(q2 + �(1 � �)k2 +m2)2 (27)where k is the external momentum, q is that of the loop (both euclidean) and d�q � dDq(2�)D . Inspace-time dimension D = 4 the q-integral diverges logarithmically. It may be regularized byrestricting the integration to jqj � �.Î�4 (k) = g24 Z 10 d� Zjqj�� d�q(q2 + �(1 � �)k2 +m2)2 = g232�2 ln �� + K̂�4 ( k2�2 ; m� )where lim�!1 K̂�4 ( k2�2 ; m� ) = � g264�2 �Z 10 d� ln [�(1� �) k2�2 + m2�2 ] + 1� (28)The renormalization idea is then to substituteg(�) = ��; m2(�) = �2 �r + 1Pn=1 h�n �rn(�; r; �� )� (29)for the coupling constant and the mass squared in the initial action (recall that the theory doesnot need renormalization of g and only 1 loop counterterm would do). The powers of � make� and r dimensionless. With a choice�r1 = �216�2 ln ��55



the contribution to the 1 loop amplitude I�4 (k) diverging when �!1 is canceled resulting inthe renormalized value of the amplitudeÎ�4;ren(k) = ��2�264�2 �Z 10 d� ln [�(1� �) k2�2 + r] + 1�The RG functions �(�; r) = � dd� �; 2(�; r) = � dd� r describing the scale-dependence of therenormalized couplings are obtained by di�erentiating eq. (29) over ln� with �; g(�) and m2(�)held �xed:0 = �� + �2 d�d� ;0 = � dd� [�2r + h� g216�2 ln �� + O(h�2)] = 2�2r + �3 drd� � h� �2 �216�2 + O(h�2)so that �(�; r) = ��; 2(�; r) = �2r + h� �216�2 + O(h�2) : (30)Let us see how the same problem is treated in the dimensional regularization - minimalsubtraction scheme. Using the relation R10 e�a� � d� = a�2 , we may rewrite the integral forÎD(k) in the form18ÎD(k) = g24 Z 10 d� Z 10 d� Z � e�[q2+�(1��)k2+m2]� d�q : (31)Performing the q-integral �rst, we obtainÎD(k) = g22D+2�D=2 Z 10 d� Z 10 d� �1�D=2 e�[�(1��)k2+m2]� :The latter integral converges for any complex D with ReD < 4 . It gives explicitlyÎD(k) = g22D+2�D=2 �(2� D2 ) Z 10 d� [�(1� �)k2 +m2]D2 �2 :The divergence in four dimensions manifests itself as a pole in the expression at D = 4;ÎD(k) = g232�2 14�D � g264�2 �Z 10 d� ln [�(1� �)k2 +m2] + ln 4� + C� + O(4�D)where C = ��0(1) is the Euler constant. In the minimal subtraction renormalization scheme,the amplitude is renormalized by substituting for the original coupling and mass squaredg = �3�D=2�; m2 = �2 �r + 1Pn=1 h�n �rn(�; r)� (32)18for those who do not remember Feynman's famous formula (I don't), we could have used twice the identityR10 e�ai�i d�i = a�1i in the original expression for ÎD(k) changing then the variables to (�; �) where �1 =�� ; �2 = (1� �)� 56



with the pure pole dependence of �rn on the dimension:�rn = knXj=1 �rn;j(�; r) 1(4�D)jchosen to cancel exactly the pole part of the dimensionally regularized amplitudes. In reality,only the 1 loop amplitude has a pole which is simple. With�r1 = �216�2 (4�D) ;we obtain the renormalized amplitudeÎ�4;ren(k) = � �2�264�2 �Z 10 d� ln [�(1� �) k2�2 + r] + ln (4�) + C�(note how � has entered under the logarithm). The di�erence between the two renormalizationsmay be absorbed into a �nite rede�nitions of the renormalized parameters �; r , see Problem 2below.Now the RG functions �(�; r); 2(�; r) are obtained by di�erentiating eqs. (32) with respectto ln� while keeping g and m2 �xed:0 = (3 � D2 )�3�D=2� + �4�D=2 d�d� ;0 = � dd� [�2r + h� �2�216�2(4�D) ] = � dd� [�2r + h� �D�4g216�2(4�D) ]= 2�2r + �3 drd� � h��2 �216�2so that �(�; r) = (D2 � 3)�; 2(�; r) = �2r + h� �216�2 : (33)The gain is that we have obtained formulae for � and 2 in general dimension. They mayserve as an indication of how the �eld theory behave in smaller or larger dimension then theone considered. For example, the vanishing of the linear contribution to �(�) in 6 dimensionssignals that the theory becomes only renormalizable there. Note that eqs. (33) reduce to (30)at D = 4. This did not have to be the case since we have changed the parametrization of thelimiting theories and what is geometrically de�ned is the vector �eld �@� + 2@r .Problem 2. Find to the 1 loop order the transformation between the coordinates (�; r)of the renormalized 4-dimensional �3 theory corresponding to the passage between the tworenormalization schemes discussed above. Show that it preserves the form of the vector �eld�@� + 2@r .Problem 3. Find the running couplings �(�); r(�) using the 1 loop approximations to the�; 2 functions. What can one tell about the e�ect of higher loop corrections to the large �(UV) behavior of the running couplings? 57



The four-dimensional �3 theory, in spite of its super-renormalizability (only a �nite number ofdivergent 1PI graphs) and self-consistency of its perturbative calculations, has a non-perturbativestability problem related to the lack of a lower bound for the cubic polynomial. This should serveas a warning that even the RG improved perturbative analysis is not enough to assure existenceof a renormalized QFT.7. Renormalization of the sigma models to 1 loopAs mentioned above, the background �eld e�ective action �b(�) of the sigma model is equal tothe � = 0 value of the e�ective action of the �-theory with the action S�(�) given by the relatione�Sg;u(e��) Dg(e��) = e�S�(�) D� :The 1 st of eqs. (9) implies then that in the perturbation expansion�b(�) = S�(0) � X1PI vacuumgraphs G IG(S�) � ln (Z e� 12 S00�(0)(�2)D�) : (34)One of the simplifying features of the dimensional regularization is that we may disregard theterms in S�(�) coming from the logarithm of the \Radon-Nikodym derivative" Dg(e��)D� . Formally,they are proportional to �(2)(0) = R d�q which vanishes in the dimensional regularization.Problem 4. (a). (for Pasha). Show by calculating the D-dimensional integral R e�q2 dq intwo ways that the volume of the unit sphere in D dimensions is equal to 2�D2 =�(D2 ) .(b). Show that in the radial variables the D-dimensional integral Rjqj�� dq converges for ReD < 0 :Zjqj�� d�q = � 21�D��D=2D �(D=2) �D :De�ning the value of the integral by analytic continuation for integer D � 0 and taking � tozero we infer that R d�q vanishes in positive dimensions in the dimensional regularization.Expanding in local coordinates(e��)i = �i + �i � 12 �ijk(�)�j�k + O(�3)where �ijk = f ijkg is the Levi-Civita symbol, we obtain after a little calculation (you may do it!)Sg;u(e��) = 14� Z �gij(�) @��i @��j + u(�) + 2gij(�) @��i r��j + @iu(�) �i+ gij(�)r��i r��j � Rijkl(�) @��i @��k �j �l + 12ri@ju(�) �i�j�dx + O(�3) : (35)58



Above, ri denotes the covariant derivative over the i th coordinate andr��i = @��i + �ijk(�) @��j �k :The vector bundle ��TM has a natural metric given by ��g . It will be convenient to choose aglobal orthonormal frame (ea) da=1 of ��TM (d denotes the dimension on M ). In coordinates,ea = eia@�i . Di�erent choices of ea are related by gauge transformations e0a = �baeb with � anSO(d)-valued function on the plane E2. Of course eia depend also on �eld � . It will be moreconvenient to rewrite � = �aea or �i = �aeiawith (�a) a sequence of functions on E2. The expansion (35) becomes thenSg;u(e��) = 14� Z �gij(�) @��i @��j + u(�) + 2eai @��ir��a + eia@iu(�) �a+ (r��a)2 � Riakb(�) @��i @��k �a �b + 12 eia ejbri@ju(�) �a�b�dx + O(�3) : (36)where (eai ) is the matrix inverse to (eia) , Riakb = ejaelbRijkl andr��a = @��a + A ab� �b with A ab� = eai �@�eib + �ijk@��j ekb� :Clearly, A ab� dx� transforms as an SO(d) connection form under the gauge transformationsea 7! �baeb . The perturbation expansion (34) for �b(�) becomes now to the 1 loop order:�b(�) = 14�h� Z �gij(�) @��i @��j + u(�)�dx� ln�Z e� 14� R ((r� �a)2 � Riakb(�) @��i @��k �a �b + 12 eiaejbri@ju(�) �a �b) dx D�� + O(h�) (37)(the terms linear in � on the right hand side of (35) do not contribute to �b ). The functionalintegral gives a determinant and we could use the zeta-function prescription to make sense out ofit in an SO(d)-gauge-invariant way. We shall be, however, more interested in the divergent partof the determinant than in its renormalized value. The dimensional regularization will allow toextract the divergence in a convenient (SO(d)-gauge-invariant) manner and, besides, it works toall orders.We shall obtain the expression for the 1 loop contribution to �b(�) expanded around aconstant value �0 of � in the form (in coordinates around �0 )[�b(�)]1 loop = Xn Z Kn;D(x1; : : : ; xn;�0) nYj=1(�(xj)� �0) dxj (38)with the translationally invariant kernels Kn;D regularized dimensionally, i. e. meromorphicallydependent on D , with possible poles at D = 2 and with � � �0 vanishing fast at in�nity. Inorder to generate the expansion (38) for the 1 loop contribution to �b(�) , we shall separate theterm 14� Z �(@��a)2 + 12 (eiaejbri@ju)j�0 �a�b� dx59



in the action as producing the Gaussian measure19 from14� Z �2A ab� @��a �b + A ab�A ac� �b �c + 12 �eiaejbri@ju(�) � (eiaejbri@ju)j�0� �a�b�Riakb(�) @��i @��k �a �b�dxtreated as an interaction. Now it is easy to enumerate the divergent graphs. First there arelogarithmically divergent contributions coming from the graphsO�A� A� A� �O� A� :They cancel each other (there are no divergences in 2D gauge theory). The only divergent termswe are left with areO��R @� @� ; O�12 eer@u� 12 (eer@u)j�0 and 12 ln det 12� ���ab� + 12 (eiaejbri@ju)j�0� : (39)All other contributions are easily checked to have �nite limits at D = 2. Since in the dimensionalregularization R d�qq2+m2 = R10 d� R e��(q2+m2) d�q = 2�D��D=2 R10 d� ��D=2 e��m2= 2�D��D=2 mD�2 �(1 �D=2) = 12� 12�D + part regular at D = 2 ;the pole part of the loops in (39) is equal to14� 12�D Z ��Riaka(�) @��i @��k + 12 (�gu(�)��gu(�0))� dx(since eiaejari@ju = gijri@ju = �gu where �g denotes the Laplacian on M ). Similarly,12 ln det 12� ����ab + 12 (eiaejbri@ju)j�0� = 12 R dx R tr ln 12� �q2 + 12 eer@uj�0� d�q= const: + 12 R dx R 10 dt tr 1q2+ t2 e er@uj�0 12 eer@uj�0 d�q= const: + 18� 12�D R �gu(�0) dx:We infer that the pole part of �g(�) to the 1 loop order is[�b(�)]1 loopdiv = � 14� 12�D Z Rij(�) @��i @��j dx + 18� 12�D Z �gu(�) dxwhere Rij = Riaja is the Ricci tensor on M . [�b(�)]1 loopdiv is an integral of dimension 2 anddimension 0 operators and this result, in accord with a simple power counting, remains true athigher orders.19we assume that the matrix ((eiaejbri@ju)j�0) is positive which is the case, for example, in the vicinity of aminimum of u 60



The minimal subtraction renormalization scheme adds counterterms to bare metric g andbare potential u which cancel the above poles. More exactly, one substitutes in the initial actionSg0;u0(�) of the model with the bare metric g0 and bare tachyon potential u0 ,g0 = �D�2 (g + h�2�D �g1 + O(h�2) ) ; (40)u0 = �D (u + h�2�D �u1 + O(h�2) ) : (41)The added 1 loop counterterms change the e�ective action by��b(�) = 14� �D�22�D Z ��g1ij(�) @��i @��j + �2 �u1(�)� dx + O(h�)and we put �g1ij = Rij ; �u1 = � 12 �gu:canceling the poles at D = 2. This proves the renormalizability of the sigma model (background�eld e�ective action) to 1 loop.8. Renormalization group analysis of sigma modelsLet us compute the vector �eld �@g+ @u on the space of metrics and potentials as given by theminimal subtraction version of eqs. (20):�(g; u) = � @d� g ���� g0=const:u0=const: ; (g; u) = � @d� u ���� g0=const:u0=const: : (42)Applying the derivative dd ln� to eq. (40), we obtain0 = � dd���D�2 �gij + h�2�D Rij + O(h�2)� � = � dd���D�2 �gij + h�2�D R0ij + O(h�2)� �= �D�2��ij(g) � (2�D)gij � h�Rij + O(h�2)�from which we infer that �ij(g) = (2�D)gij + h� Rij + O(h�2) : (43)Similarly,� dd���D �u � h�2(2�D) �gu + O(h�2)� � = � dd���Du � �D�2 h�2(2�D) �g0u0 + O(h�2)�= �D�(u) + Du + h�2�gu + O(h�2)�so that (u) = � Du � 12 h��gu + O(h�2) (44)61



The vector �eld � in the space of metrics may be used to �nd out in which situations wemay expect the perturbative calculation to be self-consistent. The condition is that the runningmetric g(�) satisfying the RG equation� dd� g = �(g) (45)stays on all scales � � �0 in the perturbative regime. Let us illustrate this on the example whereM = SN�1 with the metric 1�0 times the induced metric g of the unit sphere in RN . Due tothe rotational symmetry, the renormalized metric is 1�0(�) g and the eq. (45) for its �-dependencereduces in D = 2 to � dd� �0 = h� (2�N) (�0)2 + O(h�2) :Clearly, for N > 2 , �0 is driven to zero for large � approximately as O( 1ln�) . The perturbativeregime corresponds to small �0 so that the perturbative expansion is self-consistent for the sigmamodel with M = SN�1 for N > 2 . The phenomenon is called the asymptotic freedom of thespherical sigma model since �0 = 0 corresponds to a free theory. It permits to expect that thetheory may be constructed non-perturbatively, at least in �nite volume. Such a non-perturbativetheory would break the conformal invariance of the classical sigma model. In fact, there arestrong reasons to believe that its in�nite volume version is massive (an exact expression for itsS-matrix is, conjecturally, known).The property of asymptotic freedom is shared by all the sigma models which have compactsymmetric spaces as their targets (and also, more importantly, by the non-abelian 4-dimensionalgauge theories with not too many fermion species, like Quantum Chromodynamics (QCD) de-scribing the strong interactions of quarks, mediated by SU3 gauge �elds).Problem 5. Consider the ow� dd� � = ��2 ; � dd� u = �2u + u� (46)in R2 . Show that there exist only one perturbative solutionu = 1Xn=0 an�n (47)for the invariant manifold of the ow. Study the (non-perturbative) invariant manifolds.Specially interesting cases correspond to manifolds with vanishing Ricci curvature. The N =2 spherical sigma model is the simplest example (coinciding with free �eld with values in S1 ).As we know, it corresponds to a CFT. One may then read from the  function the dimensionsequal to dq = 12 q2 of the composite operators given by the exponential functions eiq� on S1 . dgare equal to the eigenvalues of �12�g (the tree contribution to the  comes from the fact that wehave considered integrated insertions of the composite operator into the action). For Ricci attargets there is no renormalization of the metric in the 1 loop order and, in the supersymmetricversions, up to 4 loops (4 loops excluded). No renormalization of the metric means that thebeta function vanishes and the scale invariance is preserved (to 4 loops). One may then argue62



in perturbation theory (studying the Hessian of the 1 loop � ) that in the K�ahlerian case, theRicci at metric may be perturbed as to give rise to a scale invariant quantum sigma model withN = 2 superconformal symmetry (as discussed by Ed Witten during the lecture). Thus Calabi-Yau (�= K�ahler, Ricci at) manifolds should correspond to superconformal N = 2 �eld theories.This observation resulted in a conjectured mirror symmetry between Calabi-Yau manifolds, nowestablished in many instances.In the case of SUSY sigma models with hyper-K�ahler targets (i.e. with the N = 4 super-symmetry), � vanishes to all orders of the loop expansion.The inclusion of the 2-form term (11) into the action of the sigma models modi�es the aboveresults. In the 1 loop order, the beta function � dd�(gij + bij) is given by the Ricci curvature ofthe metric connection with torsion �ijk = f ijkg+ 32 gilHjkl where the antisymmetric tensor Hjklcorresponds to �d! . In models in which the connections with torsion are globally at, the betafunction vanishes to all orders (even without supersymmetry). The WZW model of CFT, whichwe shall discuss in the next lecture, corresponds to such a situation. Addition of the 2-formwhich is closed does not modify the � function but may change the long-distance behavior of themodel (that seems to happen for the sigma model with S2 target where the addition of the termwith ! equal to � times the volume form of the unit sphere should render the model massless).As for the renormalization of the potentials whose scale-dependence is governed by the RGequation � dd� u = �2u � 12 h��gu + O(h�2)note that, on a symmetric space, u (approximately) reproduces itself up to a normalization if itbelongs to an eigen-subspace of the Laplacian. The RG analysis allows then to predict the shortdistance behavior of the correlation functions involving insertions of the corresponding compositeoperators (somewhat similarly as for M = S1 ).ReferencesFor the rudiments of the perturbative approach to functional integrals, Feynman graphs etc.see again the book by Zinn-Justin, Sects. 5.1-5.3 and Kazhdan's, Witten's and Gross' lecturesin the present series.The original reference to the renormalization of geometric sigma models is Fiedan's thesispublished with few years delay in Ann. Phys. 163 (1985), p. 318. The SUSY case is discussedin Alvarez-Gaume-Freedman-Mukhi, Ann. Phys. 134 (1981) p. 85, with further developmentsin Alvarez-Gaum�e-Ginsparg, Commun. Math. Phys. 102 (1985), p. 311, Alvarez-Gaum�e-S.Coleman-Ginsparg, Commun. Math. Phys. 103 (1986), p. 423 and Grisaru-Van De Ven-Zanon,Nucl. Phys. B 277 (1986), p. 388 and p. 409 (the last papers discovered 4th order contributionsto the supesymmetric beta function). For the case of sigma models with a 2-form in the action seeBraaten-Curtright-Zachos, Nucl. Phys. B 260 (1985), p. 630 and also Callan-Friedan-Martinec-Perry, Nucl. Phys. B 262 (1985), p. 593. 63



Lecture 4. Constructive conformal �eld theoryContents:1. WZW model2. Gauge symmetry Ward identities3. Scalar product of non-abelian theta functions4. KZB connection4. Coset theories5. WZW factoryLet us recall the logical structure of this course. In the �rst lecture we studied the free�eld examples of CFT's. In the second one, we analyzed the scheme of (two-dimensional) CFTfrom a more abstract, axiomatic point of view. In the third one, we searched perturbativelyamong geometric sigma models for non-free examples of CFT's. Finally, in the present lecturecompressed due to lack of time, we shall analyze a specially important sigma model, the Wess-Zumino-Witten (WZW) one, whose correlation functions may be constructed non-perturbatively,with a degree of explicitness comparable to that attained for toroidal compacti�cations of free�elds (constituting the simplest examples of WZW theories). The WZW model appears to bea generating theory of a vast family of CFT's whose correlations can be expressed in termsof the WZW ones. The comparison of the non-perturbative models obtained this way withthe perturbative constructions of sigma models allows for highly non-trivial tests of di�erencesbetween the geometry of Ricci at (Einstein) spaces and that of CFT's, replacing the Einsteingeometry in the stringy approach to gravity.1. WZW modelThe target space of the WZW sigma model is a compact Lie group manifold G and the two-dimensional theory may be considered as a generalization of quantum mechanics of a particlemoving on G. In the latter case the (Euclidean) action functional isS(g) = � 12 Z tr(g�1@xg)2 dx (2)where "tr" denotes the Killing form20. Let R denote an (irreducible) unitary representationg 7! gR of G in a (�nite dimensional) Hilbert space VR . The path integral for the quantum-mechanical particle on G, corresponding to the Wiener measure on G, may be solved with theuse of the Feynman-Kac formula taking the formZMap([0;L]per;G)n
i=1gRi (xi) e�kS(g) Yx dg(x) � ZMap([0;L]per;G)e�kS(g) Yx dg(x)20normalized so that the long roots have length squared 264



= Tr e�x1H gR1 e(x2�x1)H gR2 : : : gRn e(L�xn)H � Tr e�LH (3)where 0 � x1 � x2 � � � � � xn � L , 2kH is the Laplacian on G and gR is viewed as a matrix ofmultiplication operators, both acting in L2(G; dg) (dg is the Haar measure). Compare Problem3 in Lecture 1 dealing with the case G = S1. The theory possesses the G� G symmetry whichmay be used to solve it: the right hand side of (3) is calculable in terms of the harmonic analysison G.Problem 1. Compute explicitly the 1-,2- and 3-point functions in (3).The Euclidean action of the WZW model is a functional on Map(�; G) where � is a compactRiemann surface. If, for simplicity, we assume G to be connected and simply connected thenS(g) = � i4� Z� tr g�1@g ^ g�1 �@g + i4� Z� g�! (4)where the 2-form ! is de�ned on open subsets O � G with H2(O) = 0 and satis�es thered! = �13 tr (g�1dg)^3 . The dependence of the second term of S(g) on the choice of ! makesS(g) de�ned modulo 2�iZ so that e�kS(g) is well de�ned for integer k. To have the energybounded below, we shall take k , called the level of the WZW model, positive.Problem 2. Assuming, more generally, that g takes values in the complexi�ed group GC �ndthe equations for stationary points of S(g).The correlation functions of the WZW model are formally given by the functional integrals:h n
i=1 gRi (xi) i = ZMap(�;G) n
i=1 gRi (xi) e�kS(g) Dg � ZMap(�;G)e�kS(g) Dg 2 n
i=1End(VRi ) (5)where Dg stands for the formal product of the Haar measures dg(x) over x 2 �.As we have mentioned at the end of Lecture 3, the renormalization group beta function com-puted for the WZW sigma model vanishes to all orders due to the atness of the connectionswith torsion generated from the metric and the 2-form ! on G. Thus the model is conformallyinvariant and does not need renormalization of the action (4) in perturbation theory. The con-formal invariance holds, in fact, also non-perturbatively due to the LG � LG symmetry of thetheory where LG denotes the loop group Map(S1; G) of G. The WZW model may be solvedexactly by1. harmonic analysis on LGor by2. exact functional integration.As we shall see, the (matrix-valued) composite operators gR(x) need multiplicative renormaliza-tion and acquire scaling dimensions 2cRk+h_ where cR denotes the quadratic Casimir of R and h_stands for the dual Coxeter number of G (the quadratic Casimir of the adjoint representation).65



2. Gauge symmetry Ward identitiesWe shall sketch here the functional integral approach to the WZW theory. It will be convenientto extend a little the model by coupling it to an external gauge �eld21 A = A10+A01, a 1-formwith values in the complexi�ed Lie algebra gC of G. De�ne22S(g;A) = S(g) + ik2� Z� tr [A10 ^ g�1 �@g + g@g�1 ^A01 + gA10g�1 ^A01] : (6)Under the ("chiral") gauge transformations corresponding to maps h1;2 : � ! GC the actionS(g;A) transforms according to the Polyakov-Wiegmann formulaS(h2gh�11 ; h1A10 + h2A01) = S(g; A10 +A01) � S(h1; A10) � S(h�12 ; A01) (7)where h1A10 = h1A10h�11 + h1@h�11 and h2A01 = h2A01h�12 + h2 �@h�12 .Problem 3. Prove the Polyakov-Wiegmann formula.In the presence of the external gauge �eld A, the partition function of the WZW theory will beformally de�ned as ZA = ZMap(�;G)e�kS(g;A) Dg (8)and the correlation functions h
gRi (xi) iA by eq. (5) with S(g) replaced by S(g;A) (no func-tional integration over A). Using the formal extension to functional integrals of the simpleinvariance property ZG f(h2gh�11 ) dg = ZG f(g) dgholding for h1;2 2 GC if f is an analytic function on GC , we obtainZ h1A10+h2A01 h
gRi (xi) i h1A10 +h2A01 = Z n
i=1(h2gh�11 )Ri (xi) e�kS(h2gh�11 ;h1A10+ h2A01) Dg= ekS(h1;A10) ekS(h�12 ;A01) 
i (h2)Ri (xi) ZA h
gRi (xi) iA 
i (h1)�1Ri (xi) : (9)This is the chiral gauge symmetry Ward identity for the correlation functions (recall the di�eo-morphism group and the local rescaling Ward identities discussed in Lecture 2).The identity (9) factorizes into a holomorphic (A01-dependent) and an anti-holomorphic (A10-dependent) ones. Hence in order to study the A01-dependence of the correlation functions it isenough to look for holomorphic maps on a Sobolev space of 0,1-forms23 A01 with values in g	 : A01 �! n
i=1VRi � VR21in general, we shall not assume the unitarity A = �A� of the gauge �eld22a more standard de�nition subtracts also A10 ^A01 inside [ : : :]23what follows does not depend on the assumed degree of smoothness of forms provided it is high enough66



satisfying the "factorized" Ward identity	(hA01) = ekS(h�1;A01) n
i=1hRi (xi) 	(A01) : (10)The relation (10) describes the behavior of 	 along the orbits of the group GC of complex(Sobolev-class) gauge transformations in A01. The orbit space A01=GC is the moduli spaceof holomorphic GC bundles which, upon restriction to semi-stable bundles and appropriatetreatment of semi-stable but not stable ones, becomes a compact variety N of complex di-mension 0, rank(G) and dim(G) (h� � 1) for genus h� equal to 0, 1 and > 1, respectively.The space W (�;x;R; k) of 	's coincides with the space H0(V) of holomorphic sections ofa vector bundle V over N with typical �ber VR (V = A01 �GC VR essentially). In anotherdescription, W (�;x;R; k) = H0(L) where L is a line bundle over the moduli space of holo-morphic GC-bundles with parabolic structures at points xi and 	's may be interpreted as anon-abelian generalization of theta functions. The essential implication of these identi�cations isthat W (�;x;R; k) is a �nite-dimensional space. Its dimension depends, in fact, only on h�; kand R and is given by the celebrated Verlinde formula. W (�;x;R; k) may be also identi�edwith the space of quantum states of the Chern Simons theory.Out of the global Ward identities (9) one may extract the in�nitesimal ones by taking hi =e�i and Taylor-expanding in �i similarly as we analyzed the in�nitesimal consequences of thedi�eomorphism and rescaling Ward identities in Lecture 2. De�ne the insertions of currents intothe correlations by hJaz : : : iA = �� 1ZA ��Aa�z ZA h : : :iA ;hJa�z : : : iA = �� 1ZA ��Aaz ZA h : : :iA(the subscript "a" corresponds to a basis (ta) of the Lie algebra g s.t. tr tatb = 12 �ab). Denote byJ(z) ( �J(�z) ) the insertions of Jz ( �J�z ) into correlations with A vanishing around the insertionpoint and the metric locally at. J(z) ( �J(�z) ) depends holomorphically (anti-holomorphically)on z away from other insertions. Expanding to the second order, one obtains from the Wardidentities (9) the operator product expansionsJa(z) J b(w) = �ab k=2(z � w)2 + ifabcz �w J c(w) + : : : ; (11)�Ja(�z) �J b( �w) = �ab k=2(�z � �w)2 � ifabc�z � �w �J c( �w) + : : : ; (12)Ja(z) �J b( �w) = : : : (13)which imply for the modes of the corresponding Hilbert space operators J (z) = Pn Jnz�n�1,�J (�z) = Pn �Jn �z�n�1 the Kac-Moody algebra relations[Jan; J bm] = ifabcJ cn+m + 12 kn �ab �n+m;0and similarly for �Jn with the commutators between Jn and �Jm vanishing.67



Problem 4. Prove the operator product expansions (11-13).Subtraction of the singular part from the expression tr J(z)J(w) gives the Sugawara con-struction of the energy-momentum tensor of the WZW theory:T (w) = 2k+h_ limz!w �tr J(z)J(w) � dim(G) k4(z�w)2 �and similarly for �T ( �w) . In modes, this becomesLn = 2k+h_ 1Xm=�1 tr : Jn�mJm :where the normal ordering puts Jp with positive p to the right of the ones with negative p .3. Scalar product of non-abelian theta functionsSince the A10-dependence of the unnormalized correlation functions ZA h
gRi (xi) iA coincideswith that of 	(�(A10)�) (recall that the complex conjugate space VR �= V �R ), we must haveZA h
gRi (xi) iA 2 W (�;x;R; k)
W (�;x;R; k)as a function of A or, more explicitly,ZA h
gRi (xi) iA = H�� 	�(A01)
	�(�(A10)�) (14)where (	�) is a basis of W (�;x;R; k) , (H��) is an x-dependent matrix and the summa-tion convention is assumed. From formal reality properties of the functional integral de�ningZA h
gRi (xi) iA one may see that (H��) should be a hermitian matrix. In fact one may arguethat the inverse matrix (H ��) corresponds to the scalar product on the space W (�;x;R; k) ofnon-abelian theta functions: H�� = (	�;	�) (15)where ( � ; � ) is formally given by(	;	0) = Z (	(A01); 	0(A01))VR e� k2� kAk2L2 DA (16)with the integration over the unitary gauge �elds A with A10 = �(A01)�. The scalar product(16) is exactly the one which gives the probability amplitudes between the states of the Chern-Simons theory. Expressions (14) and (15) for the correlation functions may be expressed in abasis-independent way as follows. Let eA01 denote the evaluation mapW (�;x;R; k) 3 	 eA01�! 	(A01) 2 VR :68



eA01 may be considered as an element of VR 
W (�;x;R; k)� and using the scalar product dualto (16) on the second factor, we obtain the equalityZA h
gRi (xi) iA = (eA01; e�(A10)�) (17)viewed as a relation between the VR 
 VR -valued functionals of A.Let us present a functional integral proof of the relation (16). Denote ZA h
gRi (xi)iA � �(A) .Consider the integral over the unitary gauge �elds BZ �(B10 +A01) �(A10 +B01) e� k2� kBk2L2 DB= Z n
i=1(g1g2)Ri (xi) e�kS(g1)� kS(g2) � e� ik2� R tr [A10^g�12 �@g2+ g1@g�11 ^A01]� e� ik2� R tr [B10^g�11 �@g1+ g1B10g�11 ^A01+ g2@g�12 ^B01+ g1A10g�12 ^B01�B10^B01] Dg1 Dg2 DB= Z n
i=1(g1g2)Ri (xi) e�kS(g1)� kS(g2)� ik2� R tr [A10^g�12 �@g2+ g1@g�11 ^A01]� e� ik2� R tr [(g2@g�12 +g2A10g�12 )^(g�11 �@g1+g�11 A01g1)] Dg1 Dg2= Z n
i=1(g1g2)Ri (xi) e�kS(g1g2;A) Dg1 Dg2 = �(A)where the 2nd equality is obtained by a straightforward Gaussian integration over B. Upon thesubstitution of relations (14) and (16), the last identity becomesH�� H� (	�;	) 	�(A01)
	�(�(A10)�) = H�� 	�(A01)
	�(�(A10)�)or H��H� (	�;	) = H�� from which the relation (15) follows if we also assume that (H��)is an invertible matrix.The above expressions reduce the calculation of the correlation functions of the WZW modelto that of the functional integral (16). The latter appears easier to calculate then the originalfunctional integral (5). In the �rst step, the integral (16) may be rewritten by a trick resemblingthe Faddeev-Popov treatment of gauge theory functional integrals. The reparametrization of thegauge �elds A01 = h�1A01(n) (18)by chiral gauge transforms of a (local) slice n 7! A01(n) in A01 cutting each GC-orbit once24givesk	k2 = Z (	(A01(n);
(hh�)�1Ri 	(A01(n))VR e(k+2h_)S(hh� ;A(n)) D(hh�) d�Q(n) : (19)The term 2h_S(hh�) in the action comes from the Jacobian of the change of variables (18)contributing also to the measure d�Q(n) . The latter is de�ned as follows. Denote by S thecomposition of the derivative of the map n 7! A01(n) with the canonical projection of A01 ontothe cokernel of �@+[A01(n); � ] . Then the volume form �Q(n) on the slice is the composition of the24in genus 0 and 1, h 2 GC should be additionally restricted69



determinant (� the maximal exterior power) of S with the Quillen metric on the determinantbundle of the family (�@ + [A01(n); � ]) of �@-operators25.Unlike in the standard Faddeev-Popov setup, the integral over the group of gauge transfor-mations did not drop out since the integrand in (16) is invariant only under the G-valued gaugetransformations. Instead we are left with a functional integral (19) similar to the one (5) for theoriginal correlation functions, except that it is over �elds hh� which may be considered as takingvalues in the hyperbolic space GC=G. D(hh�) is the formal product of GC-invariant measureson GC=G. The gain is that the functional integral (19) may be reduced to an explicitly doableiterative Gaussian integral. For example for G = SU(2) and at genus 0 where we may takeA01(n) � 0 , S(hh�) = � i2� Z @� ^ �@� � i2� Z (@ + @�)�v ^ (�@ + �@�)vin the Iwasawa parametrization h = ( e�=2 00 e��=2 ) ( 1 v0 1 )u of the 3-dimensional hyperboloidSL2(C)=SU2 by � 2 R and v 2 C (u 2 SU2). Field v enters quadratically into the actionand polynomially into insertions. Hence the v-integral is Gaussian and its explicit calculationrequires the knowledge of the determinant of the operator (�@ + @�)(�@ + �@�) = �e�@e�2��@e�and of the propagator((�@ + @�)(�@ + �@�))�1(z1; z2) � e��(z1)��(z2) Z e2�(y) d2y(�z1 � �y)(y � z2) : (20)The �-dependence of ln det((�@ + @�)(�@ + �@�)) is given by the chiral anomaly (or local indextheorem) and is the sum of a local quadratic and a linear term. The resulting �-�eld integralappears to be also Gaussian (of the type encountered in functional-integral representations ofa 2-dimensional Coulomb gas correlation functions in statistical mechanics). Similar iterativeprocedure based on the Iwasawa parametrization of GC=G works for arbitrary G and also athigher genera. A result becomes a �nite-dimensional integral over parameters ya 2 � in theexpressions of the type (20) for the v-�eld propagators (positions of the "screening charges" inthe Coulomb gas interpretation) and, at genus h� > 0, over (a part of) the moduli parametersn . At genus 0, the GC-orbit of A01 = 0 is dense in A01. As a result 	 2 W (CP 1;x;R; k) isfully determined by 	(0) 2 (VR)G , the G-invariant subspace of VR . HenceW (CP 1;x;R; k) � (VR)Gcanonically. For G = SU2 the representations Ri are labeled by integer or half-integer spins jiand the representation spaces Vji are spanned by vectors (f lvji)l=0;1;::: ;2ji where vji is the highestweight (HW) vector annihilated by e , with (e; f; h) the usual basis of sl2 . One has, using thestandard complex variable z on CP 1 to label the insertion points,W (CP 1; z; j; k) = fv 2 (Vj)SU2 j (
vji ; Yienii eziei v ) = 0 if N � J � k � 1 g25again, the cases of genus 0 or 1 require minor modi�cations70



where ei = 1 
 1 � � � 
 1 
 êi 
1 
 � � � 
 1 , N � Pi ni and J � Pi ji . In particular, for 2 or 3points, W (CP 1; z; j; k) = ( (Vj)SU2 if J � k ;f0g if J > kand does not depend on z. The scalar product (16) is given bykvk2 = f(�; z; j; k) ZCJ j (v; !(z;y) ) e� 1k+2 U(z;y)j2 JYa=1 d2ya (21)where f(�; z; j; k) = ePi ji(ji+1)k+2 �(zi)+ 116�(k+2) kd�k2L2 �det0(��)areaCP1 �3=2carries the dependence on the metric e�jdzj2 on CP 1 , y = (y1; : : : ; yJ) , !(z;y) is a meromorphicVj-valued function !(z;y) = JYa=1 nXi=1 1ya�zi fi n
i=1 vjiand U(z;y) is a multivalued function12 U(z;y) = Xi<i0 jiji0 ln(zi � zi0) � Xi;a ji ln(zi � ya) + Xa<a0 ln(ya � ya0) :Integral (21) is over a positive density with singularities at coinciding ya and the question arisesas to whether it does converge. A natural conjecture is that the integral is convergent if andonly if v 2 W (CP 1;x;R; k) � (VR)G (the only if part is easy). For 2- or 3-point functions theintegrals can indeed be computed explicitly con�rming the conjecture. Numerous other specialcases have been checked. However, the general case of the conjecture remains to be veri�ed. Notethat the dependence of the scalar product (21) on the conformal factor � agrees with the value3kk+2 of the central charge of the SU2 WZW theory and with the values �j = ��j = j(j+1)k+2 ofthe conformal dimensions of �eld gj(x) (it is the inverse of f(�;x; j; k) which enters the WZWcorrelation functions).Explicit �nite-dimensional integral formulae for the scalar product (16) have been also ob-tained for general groups and at genus 1 and, for G = SU2, for higher genera26. The proof of theconvergence of the corresponding integrals is the only missing element in the explicit constructionof all correlation functions of the WZW theory although several special cases have been settledcompletely.26it is clear that the case of general group and genus >1 could be treated along the same lines71



4. KZB connectionThe spaces W (�;x;R; k) of non-abelian theta functions depend on the complex structuresof the surface � and on the insertion points. The complex structures J 2 �(EndT�), J2 = �1,form a complex (in�nite dimensional Fr�echet) manifold on which the group of Di�eomorphismsof � acts naturally. The holomorphic tangent vectors to the quotient moduli space �J = ��correspond to sections of EndTC� satisfying J �� = ���J = i��. Locally, �� may be rep-resented as ��z�z @z 
 d�z in J -complex coordinates. The family of spaces W (�;x;R; k) forms acomplex �nite-dimensional bundle W(R; k) over the space of complex structures and n-tuplesof noncoincident points x in �.The bundle W(R; k) may be supplied with a natural (w.r.t. the action of di�eomorphismsof �) connection r provided that we choose (smoothly) for each J a compatible metric on�. The connections for di�erent choices of the metric are related by the conformal anomaly. If(J;x; A) 7! 	(J;x; A) depending holomorphically on A01 = A(1 + iJ)=2 (A = �A� is assumed)represents a local section of W(R; k) , thenr��	 = d��	 + k8� �Z tr A01 ^A01���	 ; (22)r�zi	 = �@�zi 	 + (A�zi)i	 ; (23)r��	 = d��	 � 12�i �Z T (z)��z�z d2z�	 ; (24)rzi	 = @zi + limz!zi 2taik+h_ �Ja(z) + taiz�zi �	 : (25)Above z denotes a J -complex coordinate on � and d��	 or d��	 stands for the directionalderivatives of 	 when the points x and A are kept constant. The �rst two equations equipW(R; k) with a structure of a holomorphic vector bundle. In the last 2 equations, the metric on� is assumed for simplicity to satisfy z�z = 2, �zz = 2i ��z�z and A is taken vanishing aroundthe support of �� or around the insertion point xi and �� = O((z � zi)2).In the genus 0 case, W(R; k) is a subbundle of the trivial bundle with the �ber (VR)G andthe connection r extends to the bigger bundle and is given byr�zi = @�zi ; rzi = @zi + 2k+h_ Xi0 6=i tai tai0zi0�zi � @zi + 1k+h_ Hi(z)for the metric at around the insertions. The commuting operators Hi(z) 2 End(VR) are knownas the Gaudin Hamiltonians. The corresponding at connection appeared (implicitly) in thework of Knizhnik-Zamolodchikov on the WZW theory. The higher genus generalizations of theKZ connection were �rst studied by Bernard. We shall call the connection de�ned by eqs. (22-25)the KZB connection. In general, it is only projectively at.One of the basic open questions concerning the KZB connection is whether it is unitarizable.In other words, whether there exists a hermitian structure on the bundle W(R; k) preservedby r. It was conjectured that the answer to this question is positive and that it is exactly thescalar product on spaces W (�;x;R; k) discussed above that provides the required hermitianstructure. Note that a 0,1 unitary connection on a holomorphic hermitian vector bundle isuniquely determined. Recall that the scalar product, given formally by the gauge �eld functional72



integral (16), may be reduced to a �nite-dimensional integral which, if convergent, de�nes apositive hermitian form on W (�;x;R; k) and determines the unitary connection (and the energymomenstum tensor of the WZW theory). For genus 0 and G = SU2 , where the scalar productis given by integral (21), the unitarity of the KZ connection requires that@zi(v; v) = (v; (@zi � 1k+2Hi)v) (26)for a holomorphic family z 7! v(z) 2 W (CP 1; z; j; k) � V SU2j . Assuming the convergence of theintegrals permitting to di�erentiate under the integral and to integrate by parts, the above is aconsequence of the relation�@zi + 1k+2Hi(z)��!(z;y) e� 1k+2 U(z;y)� = @ya ��i;a e� 1k+2 U(z;y)� (27)where �i;a(z;y) = 1zi�ya fi Ya0 6=a nXi0=1 1ya0�zi0 fi0 n
i=1 vji :Identity (27) is equivalent to two relations:@zi!(z;y) = @ya�i;a(z;y) ;@ziU(z;y) !(z;y) � @yaU(z;y) �i;a(z;y) � Hi(z) !(z;y) = 0 : (28)The �rst one is immediate whereas the second, more involved one implies thatHi(z) !(z;y) = @ziU(x;y) !(z;y) if @yaU(x;y) = 0i.e. the Bethe Ansatz diagonalization of the Gaudin Hamiltonians Hi(z) : vectors !(z;y) arecommon eigenvectors of Hi(z) ; i = 1; : : : ; n with eigenvalues @ziU(z;y) provided that y satis�esthe Bethe Ansatz equations @yaU(x;y) = 0. The relations between the Bethe Ansatz and thelimit of the KZB connection when k ! �h_ appear in the context of Langlands geometriccorrespondence. These relations seem also to be at the heart of the question about the unitarityof the KZB connection at positive integer k .5. Coset theoriesThere is a rich family of CFT's which may be obtained from the WZW models by a simpleprocedure known under the name of a coset construction. On the functional integral level,the procedure consists of coupling the G-group WZW theory to a subgroup H � G unitarygauge �eld B which is also integrated over with gauge-invariant insertions. Let us assume, forsimplicity, that H is connected and simply connected, as G. Let ti 2 (Hom(VRi ; Vri ))H beintertwiners of the action of H in the irreducible G- and H-representation spaces, respectively.The simplest correlation functions of the G=H coset theory take the formh nYi=1 tr tigRi (xi)t�i i = Z nYi=1 trVritigRi (xi) t�i e�kS(g;B) Dg DB�Z e�kS(g;B) Dg DB : (29)73



Note that the g-�eld integrals are the ones of the WZW theory and are given by eq. (14). DenotingZG=H = R e�kS(g;B) Dg DB , we obtainZG=H h nYi=1 tr tigRi (xi)t�i i = H�� Z (
ti	�(B01); 
ti	�(B01) )Vr e� k2� kBk2L2 DB : (30)For 	 2 W (�;x;R; k), the map B01 7! 
ti	�(B01) 2 Vr is a group H non-abelian thetafunction belonging to W (�;x; r; ~k) (the normalization of the Killing forms of G and H maydi�er, hence the replacement k ! ~k ). Denote by T the corresponding map from W (�;x;R; k)to W (�;x; r; ~k). Eq. (30) may be rewritten asZG=H h nYi=1 tr tigRi (xi)t�i i = H�� (T	� ; T	�) = Tr T �T ; (31)or choosing a basis ( �) of W (�;x; r; ~k),ZG=H h nYi=1 tr tigRi (xi)t�i i = H�� T �� h�� T �� (32)where (T �� ) is the ("branching") matrix of the linear map T in bases (	�), ( �) and h�;� =( �;  �) . Since the above formula holds also for the partition function itself, it follows that thecalculation of the coset theory correlation functions (29) reduces to that of the scalar productsof group G and group H non-abelian theta functions, both given by explicit, �nite-dimensionalintegrals.Among the simplest examples of the coset theories is the case with G = SU2 � SU2 withlevel (k; 1) (for product groups, the levels may be taken independently for each group) andwith H being the diagonal SU2 subgroup. The resulting theories coincide with the unitary"minimal" series of CFT's with (Virasoro) central charges c = 1 � 6(k+2)(k+3) �rst considered byBelavin-Polyakov-Zamolodchikov. The Hilbert spaces of these theories are built from the unitaryheighest weight representations of the Virasoro algebras with 0 < c < 1 discussed in Lecture2. The simpliest one of them with k = 1 and c = 12 is believed to describe the continuumlimit of the Ising model at critical temperature or the scaling limit of the massless �42 theory. Inparticular, in the continuum limit the spins in the critical Ising model are represented by �eldstr g1=2(x) where g takes values in the �rst SU2. The corresponding correlation functions maybe computed as above. One obtains this way for the 4-point function an explicit expression interms of hypergeometric functions.Similar coset theories but at level (k; 2) give rise to the supersymmetric N = 1 minimalunitary series of CFT's, the simplest one with k = 1 (appearing also at k = 2 in the previousseries) corresponds to the so called 3-critical Ising model.The G=H coset theory with H = G is a prototype of a two-dimensional topological �eldtheory. As follows from eq. (31), the correlation functions of �elds tr gR(x) are equal to thedimension of spaces W (�;x;R; k) , normalized by the dimension of W (�; ;; ;; k) (and are givenby the Verlinde formula). In particular, they do not depend on the position of the insertionpoints. 74



6. WZW factoryAs we have seen above, the coset construction allows to obtain new soluble CFT's from theWZW models. Let us briey discuss further re�nements which permit a chain production ofconformal models whose partition functions and correlation functions may be computed exactly,at least in principle. The most interesting cases of such models correspond to situations whentwo di�erent constructions give rise to the same CFT, as in T -duality, mirror symmetry andother numerous instances.1. If the group G is not simply connected, the original de�nition (4) of the action of theWZW model requires a modi�cation. The result is possible further restrictions on the levels andthe appearance, in some cases, of di�erent quantizations of the same classical theory ("�-vacua"or "discrete torsion"). The models are still exactly soluble although only the partition functionsand the correlations of "untwisted" �elds have been worked out in detail for general G.2. Let H � G and Z � H be a subgroup of the center ZG of G. Let PH0 be a principalH 0-bundle where H 0 = H=Z and QG = PH0�AdH0G be the G-bundle associated to PH0 via theadjoint action of H 0 on G. For appropriate k , and for a section g of QG and a connectionB on PH0 one may de�ne the amplitude e�kS(g;B). The (unnormalized) correlation functions ofthe coset G=H 0-model may then be obtained by integrating gauge invariant insertions, weightedwith e�kS(g;B) , over g and B and summing the result over inequivalent H 0-bundles PH0 . Hence,for given H � G , there are as many coset theories as subgroups of H \ZG (some of them mighthave a non-unique vacuum).3. If H is a discrete subgroup of G, then PH carries a unique canonical at connection and isgiven by a conjugation class of homomorphisms of the fundamental group of is � into H . Theconstruction from the preceding point gives rise to the orbifolds of the WZW models.4. Supersymmetric WZW models. One adds to the G-valued �eld g the (anticommuting)Majorana Fermi �elds  ; ~ in the adjoint representation (i.e. sections of L 
 g and �L 
 g,respectively, where L is a square root of the canonical bundle of �) and one considers the actionS(g;  ; ~ ;A) = kS(g;A) � 2� Z tr � (�@L + [A01; � ]) + ~ (@�L + [A10; � ]) ~ � (33)with the external, group G gauge �eld A. The fermionic part of the theory is free and thecomplete theory may be easily solved.5. Supersymmetric coset models. The action is as in eq. (33) except that A is replaced bya group H gauge �eld B and the Majorana �elds  ; ~ are taken with values in g=h rather thanin g. Both the supersymmetric WZW models and the supersymmetric coset models possess theN = 1 superconformal symmetry.6. N = 2 coset models. If G=H is a K�ahler symmetric space then the supersymmetricG=H coset model possesses the N = 2 superconformal symmetry including the U(1) loop groupsymmetry. The simplest examples are provided by the SU(2)=U(1) models which, at level k,give rise to the minimal N = 2 superconformal theory with central charge c = 3kk+2 .7. Orbifods of tensor products of conformal �eld theories may give rise to essentially newmodels. The famous example are the (Z=5Z)3 orbifolds of product of �ve k = 3 minimal N = 275
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