
SÉMINAIRE N. BOURBAKI

KRZYSZTOF GAWĘDZKI
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CONFORMAL FIELD THEORY

by Krzysztof GAW0118DZKI

Seminaire BOURBAKI

41e annee, 1988-89, n° 704

Novembre 1988

One of the main trends in contemporary theoretical physics is the gradual convergence of

quantum mechanics and geometry. The appearence of quantum gauge theories of elementary

particles, then, more recently, of string theory (a hypothetical quantum gravity theory) marked
the milestones of this process. The geometrization of quantum physics promises not only to

reveal more fundamental physical laws based on geometrical principles. It also produces novel

insights which ultimately may lead to new geometry. As such, it deserves a close scrutiny by the

mathematicians.

Conformal field theory (CFT) is a recent example of a physical theory undergoing the ge-
ometrization process. It has already revealed new relations between different branches of math-

ematics, to mention only representation theory of infinite-dimensional groups, theory of finite

sporadic groups, algebraic geometry of moduli spaces of complex curves and of vector bundles
over them and knot theory. Some of these relations will be the topic of the present exposition.

0.1. Among the original motivations behind CFT was an effort to understand the asymptotic
behaviour of statistical mechanical systems like the celebrated Ising model in d dimensions.
The basic object of that model is a probability measure on the space of "spin configurations"
(~~), Uz = x E AR = {x E Zd~ !a?!  R~. The properties of the measure are encoded in the
correlation functions

which exist also in the infinite volume limit R -~ oo. It is expected that for d > 1 and an

appropriate choice of Q and 7/, the scaling limit of the correlation functions

exists, is non-trivial and gives smooth functions of (Zi) for Zi’ denotes the number of

elements of I).
S.M.F.
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It was realized quite early that, besides the scaling covariance, functions G, called sometimes
Green f unctions, should possess a richer conformal symmetry imposing strong restrictions on

them [67,58]. However, a real breakthrough which has started the present wave of renewed

interest in CFT came with the paper of A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov

[6] who showed that in two dimensions the conformal symmetry determines the Green functions
for the Ising and many other statistical-mechanical models completely..

0. 2. Another boost for (two-dimensional) CFT originated in the realization (see e.g. [28])
of the role which its techniques play in string theory, an attempt at a quantum theory unifying

gravity with other forces of nature [47]. In some sense, CFT can be viewed as a theory of

classical and perturbative string-theory solutions. This broadens considerably the field of its

possible physical applications.

0. 3. As in any quantum theory, the mathematics of CFT may be described by giving a

Hilbert space H (of states), a projective representation of a relevant (symmetry) group and
certain algebras of operators in H. The distinctive feature of CFT is that it is symmetric
under a group of conformal transformations which in two dimensions is the infinite-dimensional

(hence the strength of the symmetry!) group x is the group of the

orientation preserving C°°-smooth diffeomorphisms of the circle Sl. Sl x Sl may be viewed as a

compactification of the two-dimensional Minkowski space M2 via the embedding

where = Diff+S1 x Diff+S1 preserves the (pseudo-)conformal structure of Sl x Sl
inherited from that of Minkowski space.

0. 4. The plan of this exposition is as follows. We shall start by discussing the representations
of which play an important role in CFT. This shall give us an occasion to describe

one of the most important techniques of CFT, the "coset construction" ~43~, which played an

important role in the development of the representation theory of Dill+51.
Next, we shall explain how the richer operator framework of CFT arises as a natural extension

of its symmetry structure. The consistency of this framework leads to important restrictions on

the symmetry content of CFT. We shall discuss the resulting "A-D-E classification" ~13~ of the

unitary series of CFT models.

The last part of the exposition is devoted to the concept of rational CFT. We shall try to

give a precise definition of the rational CFT and to comment briefly on the recent exciting work

in this fast developing field.

0. 5. CFT is a vast subject and we shall discuss here only a limited circle of its problems. We

have left completely aside its "stringy" trend (some of its mathematical aspects were discussed
in [10]), its application to the theory of sporadic groups (the CFT construction of the Monster



group was reviewed in [79]), its supersymmetric and non-unitary extensions and, last but not

least, its multiple relations to statistical mechanics.

Even with such a limited program, our survey risked to become much too heavy if we at-

tempted presenting complete proofs of the main mathematical results discussed here. Instead,

we have decided to refer in most cases to the original work.

Our exposition being ahistorical, we were not able to give a proper credit to many important

contributions to the field. We would like to appologize for that to their authors.

1. UNITARY REPRESENTATIONS OF Dill+Sl

1. 1. Virasoro algebra and its representations

1.1. 1. is a (Frechet) Lie group [59] with the Lie algebra YectSi of smooth vector

fields on S1. Projective action of conformal symmetries in Hilbert space H requires considering
central extensions of and VectSl. The (universal) central extension VectS1 of VectSl

by R is VectS1 ~ RZ with the bracket

as established by I.M. Gelfand and D.B. Fuchs [38].
In particular, for the elements Ln = of the complexification VectC 51 of VectS1,

The subalgebra Vir = ( fl3 CLn) fl3 CZ is known as the Virasoro algebra and it is a central
nEZ

extension of the algebra of (complex) polynomial vector fields on Si. It will be useful to introduce

subalgebras T = CZ ~ CL0, N+ = ® CLn and B+ = T ® N+ of Vir.
n>1

1.1.2. The first mathematical tool of CFT is the representation theory of conformal symme-
tries. Its algebraic aspects can be exposed by studying representations of the Virasoro algebra.
We shall be specially interested in its unitary, highest weight (HW) representations.

DEFINITION 1.1. A representation of Vir in a complez vector space V is called unitary

if there ezists a (positive ) scalar product ~-l(., .) on V s.t.

DEFINITION 1.2. V) is called a HW representation if



i/. there exists vo E V s.t.

0,
= cvo, = hvo with c, h E C,

ii/. = V where U(Vir) is the universal enveloping algebra of Vir.

REMARK 1.1. In a unitary representation, the real part V ir n VectS1 of V ir is represented by
skew-symmetric operators on V. This is what is needed if we want to consider ultimately the
unitary projective representations of Dill+S1.

REMARK 1.2. In a HW representation, 7r(tZ) acts on the whole V by multiplication by c called
its central charge. vo, unique up to a factor, is called a HW vector of the representation and (c, h)
its HW.

1. 1. 3. An example of a HW representation of Vir is a Verma module. Consider the one-
dimensional representation of B+ in C with iZ and Lo acting by multiplication by c and h
respectively and N+ acting trivially. The Verma module is defined as = 

with the left action 7r of V ir. vo = 101 is its HW vector of HW (c, h). is spanned by the
basis vectors

For (c, h) real, there exists a unique hermitian form ?-~(., .) on Vc,h satisfying (1.3) and normalized
so that vo) = 1. This form may be degenerate. Denote by Null the (invariant) subspace
of vectors in Vc,h orthogonal to all other ones. Passing to the quotient gives a unique (up to the
equivalence) irreducible HW representation Wc,h = of (real) HW (c, h) (23~.

1.1. 4. The central question arises when is the (non-degenerate) form ~-l(., .) on Wc,h positive
i.e. when is Wc,h) a unitary representation. Since for n > 0

c, h > 0 is a necessary condition. The tool for a more complete answer is the-formula for the
determinant of the matrix of ?-~(., .)-products of vectors (1 .4) given by V.G. Kac [52] and proven
by B.L. Feigin and D.B. Fuchs [22].

Consider the subspace of Vc,h corresponding to the eigenvalue h+.P of (1 = 0,1, ...~.
I

It is spanned by vectors (1.4) with £ pini = l. H(Vc,h(l),Vc,h(l)) = 0 if l ~ l’. For fixed l, put
~=1



where = ~. Kac’s formula is

where m is a root of the equation

and P(k) is the number of partitions of k.
From (1.5), it is easy to see that for c > 1, h > 0 the form ~-l(.,.) is non-degenerate on E,h.

By considering the limit h --> +00, one checks that it is positive. Thus it stays non-negative for
c > 1, h > 0. As a result, all the irreducible HW representations are unitary for c > 1, h > 0

(they are equal to the Verma module if and only if c > 1 or c = 1 and h ~ 4’, m = 0,1, ...).
1. 1. 5. For 0  c  1, the situation is more interesting providing the first example of the
selective power of conformal invariance.

THEOREM 1.1. the irreducible HW representations are unitary if and

only if
c = cm for m = 2, 3, ...

and

The "only if’ part of Theorem 1.1 is due to D. Friedan, Z. Qiu and S. Shenker [29,30]. It

has been proven by a careful analysis of the geometry of lines (c(m), hr,,(m)) in the (c, h) plane.
This, in conjunction with Kac’s determinant formula, allowed subsequent elimination of portions
of the (c, h) plane were negative norm vectors appear, by an induction on ~. At the end, only the
points listed above were left.

The "if’ part of Theorem 1.1 has been proven by P. Goddard, A. Kent and D. Olive [43,44]
by an explicit realization of the irreducible HW representations of the above series in a space of

positive metric. We shall present here this so called "coset construction" as it plays an important
role in CFT, reaching beyond its representation theory aspect.

1. 2. Affine Lie algebras and their representations

1. 2. 1. For a compact, connected, simply connected, semi-simple Lie group G, consider its

loop group LG (composed of smooth maps from S1 to G). It is an infinite-dimensional Lie group
with Lie algebra Lg where g is the Lie algebra of G [68].



Consider the central extension Lg = Lg 0 RK of Lg with the bracket

for X, Y ~Lg, where [., .]g stands for the (point-wise) bracket in g and  .,. >g for a (negative)
Killing form on g. In particular, for z, y E gC and Jn(z) = E Lg c, we obtain

The subalgebra g = ( fl3 CK C Lg C is called an affine Lie algebra. It is a central

extension of the algebra of polynomial loops in gC.

DEFINITION 1.3. A representation (p, V) of  is called unitary if with respect to a scalar product
~(., .~ on V

This corresponds to the unitarity of projective representations of LG.

1. 2. 2. Let us fix a Cartan subalgebra t c g and a set of positive roots A+ C t’ of g so that

where 1 e:i:a are common eigenvectors of the adjoint action of t in gC corresponding to roots ~a. Let
g = ? gi be the decomposition of g into the simple components. We shall denote as -2kt 1 the
lengths squared of the long roots of gi with respect to the dual Killing form  .,. >g’ . k ~ (k;),
called the level, fixes the Killing form. Besides  .,. >g and  .,. we shall also use the

modified Killing forms « .,. ~>g, ~ .,. ~>g. corresponding to level (ki + where gf are the
dual Coxeter numbers (i.e. adjoint representation Casimirs) of simple components g~. Let us also
introduce subalgebras t = Jo(tc) ® CK, n+ _ ( ® Jo(Cea)) ®( ® and b+ = t ® n+

n>1

ofg.

DEFINITION 1.4. A representation ( p, V ) of g is called a HW one if

i/. there exists vo E V s.t.

P(n+)vo = 0,
p(iK)vo = vo,
p(Jo(t))vo = i  t,À > vo



for some A ~ t’C and all t ~ t,

ii/. p(u(g))vo = v.

v0 is called the HW vector and (k, a) the HW of the representation.

1. 2. 3. We may define Verma modules also for the affine algebras. Letting iK act on C as

1, Jo(t) for t E to as multiplication by i  t, A > and n+ as zero, we obtain a one-dimensional

representation of b+. The Verma module is = Ll(g) ®u(b+~ C with the left action p of g and
HW vector vo = 101 of HW (k, A). For k real and A E t’, a hermitian form ~l(., .) on can

be defined uniquely by imposing relation (1.10) and requiring that vo) =1. Dividing by its

null space gives, as previously, a unique irreducible HW representation of HW (k, A).

1. 2. 4. The question of positivity of ~-l(., .) on proved easier to decide.

PROPOSITION 1.1. (Essentially [35]). Irreducible representations are unitary if and

only if

i/. all ki are positive integers,

ii/. a is a weight and the image of -a- 2 ~ a in t induced by the Killing form « .,. »g

is in the positive Weyl alcove.

REMARK 1.3. The positive Weyl alcove is the component of t B{ t ]  t, a >E Z for some

a E 0+} which has zero in its closure and on which  ., a > are positive for a E A+. For

example, for algebra Al, at level k = 1, 2, ..., the weights a admitted by ii/. are 0, ..., k in the

natural identification of the weight lattice of Ai with Z.

1. 3. Coset construction

1.3.1. Diff+Sl acts canonically as a group of automorphisms of LG. There is an associated

homomorphism D of Vir, trivial on the center, into the algebra of derivations of the affine

algebra g. It is given by

In the space of a HW representation ( p, V ) of g of HW (k,.1), D may be implemented by a

representation of Vir in V given by the so called Sugawara construction (78,25~.
Note first that each p(Jn) can be considered as an element of g~C ® End V . « p(Jn), p(Jm) »g~

will be viewed as an element of p(U(g)) C End V. Put for v E V



Notice that the sum in (1.12) involves only a finite number of non-vanishing terms. Explicit

computation verifies that (1.12) defines a representation of Vir in V with the central charge

( 7r g, V) is not however a HW representation.
J

1. 3. 2. Let h be a semi-simple Lie subalgebra of g. Let h = 0 h j be its decomposition into

the simple factors. Each representation ( p, V ) of g induces by restriction a representation ( p, V )
of the affine algebra h corresponding to the restricted Killing form. If (p, V) is HW representation
then in V one can define two Sugawara actions 7r g and 7rh of Vir. Their central charges are cf
and ck, respectively, where k = (k;) is the level of the g-Killing form restricted to h.

Let us put, following P. Goddard, A. Kent and D. Olive [44]

PROPOSITION 1.2. 1rg/h defines a representation of Vir corresponding to central charge 

cf - ck and commuting with representation p of h.

Proof. Commutation with p follows immediately from (1.14). Hence 1rg/h commutes also
with 1rh and consequently

1. 3. 3. Although the Sugawara construction gives always representations of Vir with central

charges > 1, Proposition 1.2 allows to obtain central charges  1. To this end let us take

g = A1 ~ A1 with the Killing form of level k = (m - 2,1) and a unitary HW representation
( pk,a, Wk,a) with 03BB = ( , ~). By Proposition 1.1,  may be equal 0,1, ..., m - 2 and ~ = 0 or 1.

Let h be the diagonal subalgebra of The induced level k = m -1. We obtain



The latter runs through the same set of values as in Theorem 1.1 except for m = 2 corresponding

to the trivial representation of Vir.

1. 3. 4. The coset representations 1[" A1 ® are not irreducible as they commute with the

p representations of diagAl. Let

is an invariant subs pace for 

THEOREM 1.2. [44]

Since 1rg/h satisfies (1.3) with respect to the scalar product of this establishes the "if part

to Theorem 1.1.

1. 3. 5. Theorem 1.2 was proven in [44] by showing a decomposition

with the property that representation p of diagAi acts on the first factors and represen-

tation 1rg/h of Vir on the second ones by Proof of (1.17) is easily reduced to an

identity between the representation characters.

DEFINITION 1.5. if. The character of a HW representation of Vir is the function

where denotes the eigenspace of of eigenvalue h E C, ImT > 0.

ii/. The (affine) character of a HW representation ( p, V ) of g is the f unction

where t E t, and corres ponds to the eigenvalue hg + .~ of 

REMARK 1.4. dim V(l)  oo and the sums in (1.18) and (1.19) converge absolutely. For the

unitary representations, we may write



where 7r(g)(Lo)-, denote the closures of the operators in the Hilbert space completion
V- of V.

We shall denote by Xc,h the characters of representations They are known. In

particular for the discrete series of Theorem 1.1, they were computed by A. Rocha-Caridi [71].
The affine characters of representations were obtained by V.G. Kac in [53].

1. 3. 6. In order to prove (1.17), Goddard, Kent and Olive have checked explicitly the identity

Looking for the vector contributing the lowest power of q = to (1.20) allows to identify
a joint HW vector for p and 1rg/h in and thus the first component in the decomposition

(1.17). Subtracting its contribution from (1.20) and repeating the procedure gives an inductive
construction of (1.17).

1. 4. Integration of the affine and Virasoro algebras representations

1. 4. 1. As proven by R. Goodman and N.R. Wallach [45], the unitary HW representations
of g integrate to unitary projective representations of the loop group LG in the Hilbert

space completion of First, (pk,a, Wk,a) may be extended to a representation of LgC
on an invariant domain C C Lg appears to be represented by essentially

skew-adjoint operators whose exponentiation leads to the representation of L G (the exponential
map on Lg is a local homeomorphism with a dense image).

1. 4. 2. Similarly, each unitary HW representation Wc.h) of Vir extends to a repre-
sentation of VectCSl on an invariant domain Wc.h, Wc.h C WC.h C such that VéCtS1 is

represented by essentially skew-adjoint operators (Wc.h is the space of C°°-vectors for 
Lifting of the representation to Diff+S1 is however a more subtle problem as the image of the

exponential map of VectS1 is nowhere dense. Nevertheless one has

THEOREM 1.3. [46] There exists a projective unitary representation (Uc.h, of Diff+S1
with c,h as a common invariant subspace such that for X G VectS1

and for X E VectCSl and D E Diff+S1



where a function on VectCS1 x 

1. 4. 3. It is convenient to extend to difeomorphisms changing the orientation of
S~ by representing e’~ 2014~ by an anti-unitary involution P of such that

where X~ denotes X transformed by ei8 - e-ie,

1. 4. 4. One can easily exponentiate an even richer class of operators than in Theorem 1.3. For

example, for T E C, Imr > 0, exp[203C0i 03C0c,h(L0)-] is a contraction semigroup in mapping
into itself. Consider now for q = e2’"T the annulus Eq =  ~z~  1~ with the boundary

loops parametrized by 51 via

where Dl, D2 E Diff+S1 and are assumed real analytic. Put

Then, for a holomorphic vector field X on Eg,

as follows easily from (1.21). Here

1. 4. 5. Take now any Riemann surface E of annular topology with analytic parametrizations
pi of the boundary loops, pl negative (i.e. with disagreement with the orientation of E) and p2
positive. may be mapped conformally to certain uniquely up to rotations. We

may define

Let us identify (:E, related by conformal diffeomorphisms (preserving the parametrizations).
The set £ of classes of forms a semigroup with the product defined by gluing two surfaces
via identification of the positive boundary loop of one of them with the negative one of the other,
according to their parametrizations. As stressed by G. Segal [75], E replaces a non-existent
complexification 

PROPOSITION 1.3. a projective repreaentation of ~.



S k e t c h of proof. The intertwining property (1.23) is consistent with the semigroup
law. One can show that (1.23) fixes up to a factor by considering the holomorphic
vector fields X on E extending analyticaly to a unit disc glued via p1 to £ and by an inductive

analysis of the components of pi)v0 in eigenspaces of With pi)v0 fixed, eq.
(1.23) determines on a dense set, hence everywhere.

2. UNITARY SERIES OF CONFORMAL FIELD THEORIES

2. 1. Axioms of real CFT’s

2. 1. 1. The operators constitute a tip of the iceberg of a richer CFT structure

which assigns operators (often called amplitudes) to general Riemann surfaces with boundary.
We shall describe this structure in an axiomatic way patterned on G. Segal’s and D. Quillen’s

approach [75], see also [80,81,1].

2. 1. 2. Consider the compact, possibly disconnected, Riemann surfaces E with analytic

parametrizations p;, i E I, of the boundary loops, negative (positive) for i E I (I+), and with a
Riemannian metric g agreeing with the conformal structure of E, trivial around the boundary (i.e.
pi 9 = + under the analytic extension of p~ to a neighborhood of Iz = 1).
Fix a Hilbert space H with an anti-unitary involution P.

DEFINITION 2.1. A real CFT theory is art assignment

are trace-class operators (empty tensor product of H = C by convention ) s.t.

1.1. = j~(E’~, p ~, ga~ (dis joint union) then
/3.

1.2. and io E I+ then

with i’ ~ E ~ H, y H,

1.3. if D : E1 - E2 is a conformal diffeomorphism and p~ = D o ps, = gl, then



L4. if E’ is obtained from 03A3 by identifying the boundary loops il E I and i2 E I+ then

where i’ ~ ii, i2 and is the trace of maps between factors il and i2 in the tensor

products of H,

L5. if:E is the complez conjugate of 03A3 then

1.6. if 03C3 is a real smooth function on 03A3 vanishing in a neighborhood of aE then

where Rg is the (imaginary ) curvature form of g and c is a positive constant.

REMARK 2.1. Properties 1.1 - 1.6 may be deduced from the physicists’ intuitive representation
of the amplitudes A by formal functional integrals. H is then viewed as a space of functions

on the loop space LM of a finite dimensional space M. P consists of the inversion ~ on LM

combined with the complex conjugation. Operators A are given by kernels represented as formal

integrals over maps f : E -> M fixed on aE:

where SE is a local, conformally invariant (i.e. under g - eD’ g) "action" functional of f and d~c
is a measure on M. Sometimes, one can make rigorous sense out of such formal expressions.
This is the case e.g. when M is a torus or its orbifold, = (plus eventually i J w

E
where w is a closed form on M) and is the translation-invariant measure on M. Then the

functional integral reduces to a sum over the connected components of the space of maps f and
to infinite-dimensional Gaussian integrals. The Gaussian integrals lead to determinants which,
when (-function regularized, see e.g. [70,10], exhibit a dependence on the conformal factor of the
metric (conformal anomaly) as in 1.6 and partly motivate this least intuitive but crucial axiom.
The toroidal theories provide the simplest candidates for models of real CFT, where for some

special cases the essential work towards checking the properties M - 1.6 has been done [1].

REMARK 2.2. Although not apparent in the formulation, a projective action of x

in H may be extracted from the axioms under weak regularity assumptions. Let

Eg be as in 1.4.4 with the boundary parametrized by pol(ete) - qei03B8 and ese. Let



go = + dz 0 dz) and X be a holomorphic vector field on Eq. Then the relation

(2.1) A(03A3q,p0i,g0) =  X ~g20 A(03A3q,p0i,g0)

defines a representation 7T of the Virasoro algebra with the central charge c (the same as in 1.6,
see e.g. [21]) provided that p0i, go) does not have zero eigenvectors. Above ~g20 denotes
the (2,0) part of the g-derivate of A and the contour integral is over Izl =const, Iql  1.

Similarly

(2.2) poiqo) A(~q~ 90) - ~78os 90)

defines a representation 7r of Vir, of the same central charge, commuting with 7r.

2. 2. Unitary series partition functions

2. 2.1. It is natural to try to construct models of CFT out of the discrete series representations
of of Theorem 1.1 (with fixed c), using their extensions to the semigroup ~*, see 1.4.5,
as first building blocks. Let us take

with the natural action of V ir x V ir and P as in 1.4.3. (W denotes the complex conjugate
space of W). We shall assume that the multiplicities Nr,,;; > 0 are symmetric and N11,11 = 1.
Notice that the amplitudes A(r) = A(r + 1) - have to form a semigroup and

A(r)* = A(-T). By comparing the intertwining properties (1.23) and (2.1), (2.2), we infer that
the only possible (non-degenerate) choices for A(r) are

where and is a pair of commuting skew-symmetric matrices in 

2. 2. 2. Properties 1.4 together with 1.3 and 1.6 of 2.1.2 impose the condition of modular

invariance on Z(r) = Tr A(r)

Eq. (2.4) expresses the fact that the amplitude Z(r), called the (toroidal) partition function
should depend only on the complex torus obtained from Eq by gluing the boundary loops. The

strength of (2.4) was first realized by J. Cardy [15] (in fact (2.4) will also imply that A(r) =
A(r + 1)). Trace of (2.3) gives



where are the characters of the Virosoro representations (1.18) with known transformation

properties. It appears that the modified characters

transform under a unitary )m(m - 1)-dimensional representation of SL(2, Z) (which may be
reduced to a projective representation of SL(2, Z4m(m+1))). This enforces = =

-03C0icm/12 so that

2. 2. 3. The problem of classification of modular invariants (2.5) proved to be equivalent, as first

suggested by D. Gepner [39], to a similar but somewhat simpler one of classification of modular
invariants

for -M~o ~ 1, = M~~~ non-negative integers and the modified affine characters of the algebra
.

see (1.13) and (1.19). The correspondence is

where r’ = m - r, s’ = m + 1- s and similarly for r’, s’.

2. 3. A-D-E classification

2. 3. 1. The complete classification of modular invariants (2.6) was first conjectured by A.

Cappelli, C. Itzykson and J.-B. Zuber in [13] and subsequently, after a contribution from D.

Gepner and Z. Qiu [41], proven by the first authors in [14] and by A. Kato in [54]. At the same

time, ref. [14,54] established the equivalence between the classifications of modular invariants

(2.6) and (a generalization of) (2.5).

THEOREM 2.1. [14,54] The following is the exhaustive list of possible matrices (N~~,~~ :



2. 3. 2. The proof of this result is rather technical and we refer an interested reader to the origi-
nal papers. It is based on a detailed study of the commutant of the modular group representation

transforming the characters.

REMARK 2.3. The solutions listed above have been labelled by the simply-laced Lie algebras of

Cartan’s classification, with k + 2 equal to the dual Coxeter number of the algebra. In [13] an
observation was made that are the multiplicities of the exponents  of the corresponding
A-D-E algebras.

REMARK 2.4. The possible solutions for matrices N, corresponding to pairs of A-D-E algebras,
are obtained from (2.7) by using the solutions for M listed above. This gives two solutions for
each m plus additional ones for m=11, 12, 17, 18, 29 and 30.

2. 3. 3. The link between the ~4i and the Virasoro modular invariants is reminiscent of the
coset Ai (B Ai /diagAi construction of the discrete series of Virasoro representations out of those
of ~4i algebra. These, in fact, are two aspects of a more general relation which should extend to
the level of complete CFT’s.

In the language of formal functional integrals, one theory, the "WZW model" introduced by
E. Witten [86], studied in [55,42], see also [24], integrates over maps from a Riemann surface to
a compact Lie group G. This is the CFT which in recent Witten’s work [88] was related to the
three-dimensional topological gauge theory and to the Jones polynomials for knots (in the case
G = SU(N)).

The other model, the "coset theory", is obtained by introducing additionally in the WZW

model a gauge field with values in a subalgebra h of Lie algebra g of G [36,37]. More concretely,
we have a formal expression

for the partition function of the WZW theory where Tr = C/(Z + Zr) is the torus corresponding
to the modular parameter T and the action functional



with  .,. >g being a Killing form on g~ and 9 : B --3 G extending g to a three-dimensional
manifold with boundary Tr. For the coset model

2. 3. 4. Integrals (2.8), (2.9) may be computed in a closed form by using their formal symmetry
properties [7,37]. For G = ~!7(2) or 5’0(3) and the Killing form of level k (see 1.2.2), for k even
in the case of SO(3), one obtains from (2.8) partition functions (2.6):

respectively where the subscript labels the matrix M used. Similarly, for

at level (m - 2,1) (for m even in the second case, odd in the third one) and for h=diagAl C
A1 ® A1 = g, expression (2.9) gives partition functions of (2.5)

2. 3. 5. In general, the Hilbert space for the WZW models is built from spaces of the

unitary HW representations of affine algebra g (see Proposition 1.1):

The WZW annular amplitudes are (in notation of 1.3.1)

.,,.,

so that the partition functions become sesquilinear combinations of (modified) affine characters,
as in the special case (2.10).



2. 3. 6. The coset construction allows to ellucidate the A-D-E classification. Let S = x

SU(2)) be a quaternionic symmetric space (the possibilities are classified by g from the A-D-E

list). Let 4k be the (real) dimension of S. h fl3 .4i can be naturally embedded into the Lie algebra
of group Spin(4k). As shown by W. Nahm [63,64],

3. RATIONAL CONFORMAL FIELD THEORIES

3. 1. Green functions

3. 1. 1. Up to now, in our attempt to build a consistent real CFT from the discrete c  1 series

of representations of x we have considered only the amplitudes assigned to

the standard annuli and to tori. They can be extended to general annuli basically as in (1.22).
For disc D = 1~ with parametrization = ei’ of the boundary, one has to choose

where is the HW vector in WCm,O (the constant can be easily determined from the consistency
of gluing (D , po) with standard annuli). Extension to the discs with arbitrary parametrization of
the boundary may be done by gluing (D, po) to general annuli. The amplitude for PCt results

by gluing two discs.

Extension of the amplitude to more general Riemann surfaces is a highly non-trivial problem,
not solved yet completely, although the crucial elements of the solution have been already obtained

along the following lines.

3. 1. 2. Let HHW = ®(CNr’’" ® Cv°’~’h" ® C H. Consider for z; E C , i =

1, ..., zi ~ if i ~ i’, and for 0 ~ q; E C sufficiently small, the Riemann surface

qi) = ui{zllz - zt~  with parametrizations pOi(ei8) + of the boundary.

Let g be a metric on cpt, agreeing with its conformal structure, trivial around the boundary
of qi) (see 2.1.2) and let g~ be the induced metrics on CPl which for ~z)  1 > 1) are

pullbacks of g under z - zi + qiz (z - z; + Fix vectors vz E 

DEFINITION 3.1.

is called the Green function (of 

REMARK 3.1. Roughly speaking, G(x;, vi) is the value of the amplitude for (E(z~, qi), po=) on

vector ~ vi. The details are chosen so that G(zs, vi) depends neither on qi nor on the metric g.



3. 1. 3. The knowledge of the Green functions and of the amplitude for E = CPl allows

to reconstruct the value of g) on vectors ® wi where w~ are obtained by ac-
tion on vectors This can be done by multiple use of (2.1) and

’. /3,

(2.2). Since tu, span a dense set in H, this should determine and consequently

q;), p;, g) with arbitrary parametrizations. The latter would give the rest of the ampli-
tudes by the gluing procedure. Hence giving Green functions is another possible presentation of

CFT.

3. 1. 4. In fact, it would be enough to know the three-point Green function only, since out of

the amplitudes for PC1 B 3 discs (called often vertez operators) (+ annuli + disc) one can glue
the amplitude for any E. On the other hand, the three-point function being covariant under the

Mobins group SL(2, C) (due to property L3 in 2.1.2), it is determined by its value at three fixed

points in CPl i.e. by an element in the dual space of HHW called the tensor of

operator product coefficients.

3. 1. 5. An important observation by A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov

[6], which was at the origin of the recent progress in two-dimensional CFT, was that the Green
functions for the models discussed here obey differential equations. For the four-point function,
these become a pair of complex conjugate ordinary diferential equations in the complex variable

(of the moduli space of cpt with four punctures). Each of the equations has a finite num-

ber of multivalued analytic (antianalytic) { f p(zl, ..., z4)}, called in (6~
conformal blocks.

where the matrix of coefficients haf3 may be found by demanding univaluedness and symmetry
properties of G.

3. 1. 6. Following a somewhat different, but closely related procedure, V.S. Dotsenko and V.A.
Fateev [19,20] have computed the four-point Green functions for the (A, A) series of models built
from the unitary c  1 representations of x The simplest of these models,
corresponding to m = 3 (c = t) has been identified as describing the scaling limit of the Ising
model. In this case

1 1 1 1

and the Green functions corresponding to vectors 0 v6’ri coincide with the ones of formula

(0.1).

3. 2. Modular functors

3. 2. 1. The four-point functions determine the three-point ones and hence, in principle, all
the other amplitudes. The crucial question to be solved remains whether this determination



is self-consistent. In order to see this question, which has received much attention recently,
in the right perspective, let us remind that both the amplitudes for the torus and the four-
point functions studied above were sesquilinear combinations of finite number of multivalued
holomorphic functions (Virasoro characters, conformal blocks) on the relevant moduli space.
That leads to a link of CFT with modular geometry studying analytic vector bundles over the
moduli spaces of complex curves.

The first comprehensive proposal to reformulate CFT in terms of modular geometry was
due to D. Friedan and S. Shenker [31,32]. Their papers have triggered further research in this
direction. Friedan and Shenker considered the amplitudes for closed Riemann surfaces as basic
objects and imposed on them a consistency condition of factorization at degenerate surfaces. In
the approach which we sketch here, the amplitudes for surfaces with boundary are treated on
equal footing, in the spirit closer to the traditional operator techniques of quantum field theory.
The modular geometry appears in an attempt to construct a real CFT with the Hilbert space
H = (B (Ha ® Ha), each Ha carrying a representation of out of its "holomorphic
square root". Our presentation will be close to and largely inspired by G. Segal’s one [76]. The
reader should be warned that what follows is not a report on a complete work but more a sketch
of a program and a glimpse into the subject in constant developement. It will also be more

loosely worded falling in this respect somewhat behind the Bourbaki standard.

3. 2. 2. Suppose that we are given
i/. a finite set A with a distinguished element a° and an involution a - aov = aO,
ii/. finite dimensional vector spaces V(E,p,,a,) , together with isomorphisms

between them denoted by ^-_’ , s.t.

11.0. V(D, po, a) = sa,ao (i,
11.1. V(03A3,pi,03B1i)~~V(03A303B2,p03B2i03B2,03B103B2i03B2) for = 

11.2. 

11.3. If D : (E1, pi ) - (E2~ is a conformal diffeomorphism then V(E1, p=, 
V(~,p?,~),

11.4. 0 ifI;’ is obtained from S by gluing bound-
ary loops ii and tz?

11.5. 

11.6. V (~, p;, ai) depend holomorphically on (E, pt) (they arise from holomorphic bun-
dles over the moduli spaces of (~, pi) (49~)

II.7. The isomorphisms 11.1 to 11.5 satisfy natural commutativity and associativity re-
lations.

REMARK 3.2. The above is a version of what G. Segal calls in [76] a modular functor. Somewhat
abusively, we shall use this name here.



3. 2. 3. The simplest non-trivial example of such a structure (with A = {a°~) is given by the
determinant bundles ~fi9,10~. Each determines a compact Riemann surface E~ (of genus h)
obtained by gluing copies of the unit discs po) along the boundary loops of 03A3 parametrized
by p~ or pf . Put

(3.3) 

where is the space of holomorphic forms on E~ denotes the canonical bundle of E~).
Only the gluing isomorphism is not obvious. It is given by a version of the Krichever construction

[57]. Let us describe it briefly.
Denote by Ef the projections in on the subspaces with positive (negative) Fourier

coefficients and let Lo = (E+ + E_ )L2(Sl ). Let r° be the space of LZ I-forms on Sl with

vanishing integral. Lo and ro are in natural duality defined by the integral over Sl. If surface E’
is obtained from E by gluing two boundary loops via Pi2 o p~,l, it may have genus h’ = h or h + 1
depending on whether the loops are in different or in the same connected component of E. We

may embed and = ] pi, w’ = 0} into I‘° by

respectively. Define now

Wi are subspaces of codimension h in Lo. Let I be an isomorphism of Lo extending the map
from Wi to W2 identifying the elements arising from the same f. Then the dual I’ : Fo 2014’ maps
isomorphicly onto and is of the form: identity plus trace-class operator. We
put

where factor appears only of h’ = h + 1, cvo being a holomorphic form on E’~ such that

51 J = 1. c : nh - is defined intrinsically. It can be also verified that

the consistency conditions 11.7 are satisfied for n in (3.3) even.

3. 2. 4. The determinant bundles carry natural hermitian metrics associated to a metric on

the surface, known as Quillen metrics [69,10]. Let g be a metric on (E, p~) (agreeing with the



conformal structure of S, trivial around Choosing a similar metric on (D, we obtain,
by gluing, metrics gc on E" and g° on CPl. For 03C9 E ̂h H0(03C903A3c), we put

where is the norm induced from the natural L2 norm on the sections of cv~~ . is the

Laplacian corresponding to metric g~, det’ is the determinant in the subspace orthogonal to the
zero modes, (-function regularized [70,10], and III is the number of components The CP~
contribution is designed to remove the dependence on the metric on D. If g depends smootly
on the surface, so does the Quillen metric. Each smooth metric on a holomorphic vector bundle
induces naturally a connection. In the case of the Quillen metric, the curvature H of this metric
is given by the local Riemann-Roch-Grothendieck theorem [10].

3. 2. 5. The metric structure on Vn agrees with isomorphisms IL1 - IL5 in 3.2.2, the only
non-trivial point being

PROPOSITION 3.1. [16] 1 preserves the Quillen metric.

3. 2. 6. In general, if V is a modular functor, we shall require that

11.8. given metric g on (E, pt), there exists a non-degenerate hermitian form  .,. >y

on pi) _ ® V (E, pt, ai) smoothly depending on (E, p=) if g does;  .,. >y is
~a;) ,

preserved by isomorphisms 11.1 - II.S and it induces a connection of curvature 

3. 3. Holomorphic CFT’s

3. 3. 1. Now we are ready to describe a possible set of axioms for a "holomorphic square root"
of a real CFT.

Suppose that we are given a modular functor V and Hilbert spaces Ha , a E A, with anti-

unitary involution P : Hav . A holomorphic CFT will be specified by giving for each

(~, pi, as) trace-class amplitudes

depending holomorphically on (E,p;) and s.t.



3. 3. 2. Given a holomorphic CFT, we can immediately construct a real CFT. This may be

done by taking H = ® (Ha ® where (a, a) run through the set of indices s.t.
(a~&#x26;)

with the standard annuli as in Remark 2.2, and by setting

The conformal covariance property 1.6 of 2.1.2 follows now from the condition in 11.8 of 3.2.6 for

the curvature of bundles V as in [10, Proposition 2.3].

REMARK 3.4. The real CFT’s which are obtained this way from holomorphic CFT are known

under the name of rational theories (they have to correspond to rational values of the central

charge c and of *(Lo) eigenvalues (2~).

3. 3. 3. The fundamental problem of CFT is a classification of possible models. The central

idea behind the Friedan-Shenker program [31,32] was that a translation into the language of
modular geometry will help solving this question at least for the subclass of rational CFT’s.

3. 3. 4. The simplest rational CFT’s are the factorizable ones with the determinant modular

functors V = VC/2 of 3.2.3. The candidate examples here include the theories obtained by
a functional integral over fields f taking values in where r is an even, self-dual lattice in

i.e. r == E Zea where e.. eb E Z, ea E 2Z and det(ea . eb) = 1. The toroidal holomorphic
0=1

amplitudes for those theories are given by the 0 functions [77]

defining modular forms of weight c. c must be here a multiple of 8, the c=8 case corresponding
to rEs, the root lattice of E8 Lie algebra (the respective CFT is equivalent to level 1 WZW
model based on group E8, see 2.3.3.). For c=16, we have r = or r = 

weight lattice of group Both of the corresponding CFT’s played an important role
in string theory providing building blocks for the so called heterotic string ~48~.

For c=24 there are 24 so called Niemeier even self dual lattices, the most important being
the Leech lattice, the only one without vectors of length squared 2. In this case, by integrating
over fields taking values in where Z2 acts by multiplication by ~1, one obtains a

(candidate) theory with holomorphic toroidal amplitude given by



where j(r) = ~- + 744 + 196884q + ... is the modular function of weight zero and is the

Dedekind function [77]. This is the theory which has the Monster group of B. Fischer and R.

Griess as the symmetry group and Griess’s algebra realized in the Hilbert subspace corresponding
to the eigenvalue 2 of 7r(Zo), see [27,79].

3. 3. 5. Any amplitude ps, a;) of a holomorphic CFT can be obtained from A(D, p°, a°) _
Vo E Hao , (i.e. essentially a projective representation of Diff+S1 in each Ha)
and = 1, 2, 3, in the notation of 3.1.2 (holomorphic vertez operators).
LB. Frenkel announced the result [26] that for the factorizable case (i.e. for V = V~~2), if we

are given the above elementary amplitudes which, besides the obvious mutual consistency, define

consistently amplitudes for CP~ minus 4 discs and for the tori minus one disc, i.e. if, symbolically,

then, by subsequent gluing, one can unambiguously obtain the complete holomorphic CFT.

3. 3. 6. Since the bundles of a modular functor are projectively flat (flat for genus 1), see
condition IL8 in 3.2.6, they are essentially determined by their holonomy defining a projective rep-
resentation of the modular group Di f f (E, fo(:E, p~) of diffeomorphisms not contractible
to identity. In particular, for E = CP~ without III discs, the modular group is a central extension

of the fundamental group of ~(zl, ..., E I zs ~ for i ~ i.e. of the braid

group [3] denotes the permutation group of ~I~ elements). Similar algebraic structure has

been noticed in CFT in different but closely related contexts [74,56,33]. Recently, a systematic
attempt at a construction of CFT models starting from braid group representations has been

developed [72,73,34]. Such representations may in turn be constructed from the solutions of

the so called Yang-Baxter equation (5~, used to build exactly soluble lattice systems of statisti-

cal mechanics and related to quantum groups [84]. This motivated a search for even stronger

connections between CFT and lattice models of statistical mechanics [50,66].

3. 3. 7. As was realized by E. Verlinde [85], the consistency of modular geometry imposes strong
conditions on dimensions of spaces = 1, 2, 3. Verlinde conjectured
that N03B1103B1203B13 can be simply read off the holonomy matrix S corresponding to the transformations

on the torus bundle. His work has inspired an active research which may be viewed as

aimed at classification of possible modular functors [82,12,60,61,62]. In particular, ref. [60,62]



which gave a proof of Verlinde’s conjecture, were an attempt to write a complete list of consistency
conditions on the bundles for the elementary surfaces which would guarantee the existence of the

complete modular functor. The conclusion was that this could be done by studying the bundles
over CP~ without up to five discs and over tori without up to two ones.

To see an example of a consistency constraint, consider two chains of isomorphisms (with
surfaces cut as indicated):

Upon the introduction of diagrams for the elementary "f using" and "braiding" isomorphisms:

the equality of the isomorphisms between the constituent bundles induced by two chains leads
to the "pentagonal" consistency relation (60,fi2,11~

Further consistency conditions can be obtained using also diffeomorphisms or (equivalently)
holonomy operators which must be consistent with cutting and gluing of surfaces.

3. 3. 8. All these themes have returned recently in a quite surprising context of a three-
dimensional topological gauge theory in the paper by E. Witten [88]. It would be out of place here



to discuss the main lines of this beautiful work, mostly devoted to a path-integral construction of

knot invariants: the Jones polynomials [51]. Let us only mention that it also sketches a construc-
tion of the modular functor for the WZW model of CFT, see 2.3.3, as composed of (duals of)
spaces of (fixed time) states for the three-dimensional non-abelian gauge theory with the action
functional given by the integral of the Chern-Simons 3-form. Spaces V(:E, p=)’ become (sub)sets
of holomorphic sections of a line bundle over the space of group G connections on E modulo

complexified local gauge transformations fixed on the boundary. In particular, if 8:E = 0, the line

bundles are based on the moduli space of holomorphic G~ vector bundles over E [4,65,17,18].
Vectors in V (E, ps)’ may be formally constructed by a functional integral in the gauge theory
over a three-dimensional manifold with E as (a part of) the boundary. This three-dimensional

point of view allowed a better understanding of the monodromy properties of the WZW modular

functor and a few lines proof of Verlinde’s conjecture in this case. It should be possible to find a

three-dimensional structure in other rational CFT’s, in first turn in the coset models of 2.3.3. In

[87] E. Witten suggested that for the unitary series of models, the three-dimensional counterpart
might be quantum gravity.

3. 3. 9. Above, we have concentrated on the rational CFT’s, still not completely explored (see
e.g. recent papers [8,9]). Non-rational CFT’s promise to be equally interesting. The preliminary
results [40] reveal a rich geometry in spaces of other CFT models. It would be also interesting,

especially from the statistical-mechanical and the "stringy" points of view, to understand fully
the place occupied by CFT’s among other two-dimensional quantum field theories [89,83].

It is clear that the last word in CFT has not been pronounced yet.
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