Math 241 Final Exam Spring 2014

NAME:

INSTRUCTOR: HYND WEBER

Please clear your desk and put away all notes, books, electronic devices, etc. No outside material is allowed during the exam. Make sure to clearly indicate your responses; box your final answers if necessary.

My signature below certifies that I will comply with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

QUESTION	Points	Your
Number	Possible	SCORE
1	6	
2	6	
3	6	
4	6	
5	9	
6	9	
7	9	
8	9	
Total	60	

Your signature

A PARTIAL TABLE OF INTEGRALS

$$\int_{0}^{x} u \cos nu \, du = \frac{\cos nx + nx \sin nx - 1}{n^{2}} \quad \text{for any real } n \neq 0$$

$$\int_{0}^{x} u \sin nu \, du = \frac{\sin nx - nx \cos nx}{n^{2}} \quad \text{for any real } n \neq 0$$

$$\int_{0}^{x} e^{mu} \cos nu \, du = \frac{e^{mx}(m \cos nx + n \sin nx) - m}{m^{2} + n^{2}} \quad \text{for any real } n, m$$

$$\int_{0}^{x} e^{mu} \sin nu \, du = \frac{e^{mx}(-n \cos nx + m \sin nx) + n}{m^{2} + n^{2}} \quad \text{for any real } n, m$$

$$\int_{0}^{x} \sin nu \cos mu \, du = \frac{m \sin nx \sin mx + n \cos nx \cos mx - n}{m^{2} - n^{2}} \quad \text{for any real numbers } m \neq n$$

$$\int_{0}^{x} \cos nu \cos mu \, du = \frac{m \cos nx \sin mx - n \sin nx \cos mx}{m^{2} - n^{2}} \quad \text{for any real numbers } m \neq n$$

$$\int_{0}^{x} \sin nu \sin mu \, du = \frac{n \cos nx \sin mx - m \sin nx \cos mx}{m^{2} - n^{2}} \quad \text{for any real numbers } m \neq n$$

FACTS ABOUT BESSEL FUNCTIONS

- Bessel's equation: $r^2 f''(r) + rf'(r) + (\alpha^2 r^2 m^2)f(r) = 0$ for each integer $m \ge 0$. The only solutions which are bounded at r = 0 are $f(r) = cJ_m(\sqrt{\alpha}r)$ for a constant c.
- Orthogonality relation: Writing z_{mn} as the *n*th zero of $J_m(z)$,

$$\int_0^1 r J_n(z_{mn}r) J_n(z_{mk}r) \, dr = 0, \qquad n \neq k$$

for each m = 0, 1, ...

FOURIER TRANSFORM

$$\mathcal{F}[u](\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x)e^{i\omega x} dx, \qquad \mathcal{F}^{-1}[U](x) = \int_{-\infty}^{\infty} U(\omega)e^{-i\omega x} d\omega$$

$u(x) = \mathcal{F}^{-1}[U]$	$U(\omega) = \mathcal{F}[u]$		$u(x) = \mathcal{F}^{-1}[U]$	$U(\omega) = \mathcal{F}[u]$	
$e^{-\alpha x^2}$	$\frac{1}{\sqrt{4\pi\alpha}}e^{-\frac{\omega^2}{4\alpha}}$		$\sqrt{\frac{\pi}{\beta}}e^{-\frac{x^2}{4\beta}}$	$e^{-\beta\omega^2}$	
$e^{-\alpha x }$	$\frac{1}{2\pi} \frac{2\alpha}{x^2 + \alpha^2}$		$\frac{2\beta}{x^2 + \beta^2}$	$e^{-\beta \omega }$	
$u(x) = \begin{cases} 0 & x > \alpha \\ 1 & x < \alpha \end{cases}$	$\frac{1}{\pi} \frac{\sin \alpha \omega}{\omega}$		$2\frac{\sin\beta x}{x}$	$U(\omega) = \begin{cases} 0 & \omega > \beta \\ 1 & \omega < \beta \end{cases}$	

TABLE OF FOURIER TRANSFORM PAIRS $(\alpha, \beta > 0)$

LAPLACIAN IN POLAR COORDINATES

$$\nabla^2 \phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

1. Consider the wave equation for a vibrating string

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L$$

subject to the boundary conditions

$$u(0,t) = u(L,t) = 0.$$

Which of the following statements are correct? Note that these statements are graded +1 for each correct answer, -1 for each incorrect answer, 0 for no answer.

(a)	u represents the horizontal displacement of the string.	Υ	Ν
(b)	Newton's second law was used to derive this equation.	Y	Ν
(c)	c has units of speed.	Υ	Ν
(d)	The model is valid for large displacements in the string.	Y	Ν
(e)	The endpoints of the string are fixed.	Y	Ν
(f)	Increasing the length of the string, while keeping the density and tension fixed, will increase the frequency at which the string vibrates.	Y	Ν

2. (a) Write the forward time, centered spatial finite difference scheme for the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.$$

Here 0 < x < L and 0 < t < T. Use the notation $u_j^{(m)}$ for the approximation of the values $u(j\Delta x, m\Delta t)$ for the true solution for j = 0, 1, ..., N, and m = 0, 1, ..., M.

(b) When is the approximation method from part (a) numerically stable?

3. Set

$$f(x) = \begin{cases} x - 1, & -1 \le x \le 0\\ x + 1, & 0 < x \le 1 \end{cases} .$$

(a) Compute the coefficients in the Fourier series of $f(\boldsymbol{x})$

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\pi x) + b_n \sin(n\pi x)).$$

(b) Plot the Fourier series of f(x) on the interval [-3,3].

4. (a) Find the harmonic function $u(r, \theta)$ on the disk $r^2 \leq 1$ that satisfies the boundary condition

$$u(1,\theta) = 1 + \sin(2\theta).$$

(b) Explain why this solution is always less than or equal to 2.

5. Solve the heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \ t > 0$$

subject to the initial condition

$$u(x,0) = e^x.$$

6. Find u(x,t) that satisfies the nonhomogeneous heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + e^{-\pi^2 t} \sin(3\pi x) \qquad \text{for } 0 < x < 1, \ t > 0$$

with boundary conditions u(0,t) = u(1,t) = 0 and initial condition u(x,0) = 2.

7. Consider a vibrating circular membrane of radius 1 that has no displacement on the boundary. The associated PDE is the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u.$$

(a) After separating time, we are lead to the eigenvalue problem

$$\nabla^2 \phi + \lambda \phi = 0, \quad \phi(1,\theta) = 0.$$

Separate variables $\phi(r, \theta) = f(r)g(\theta)$ and derive ODE for f(r) and $g(\theta)$.

(b) Find the eigenvalues λ_{mn} and the corresponding eigenfunctions ϕ_{mn} . You may assume all eigenvalues are positive.

(c) Find a general solution u(r,t) when the membrane is initially circularly symmetric

$$u(r,0) = \alpha(r), \quad \frac{\partial u}{\partial t}(r,0) = 0.$$

8. (Note: Respond if HYND is your instructor) Consider the energy

$$E(t) = \frac{1}{2} \int_0^1 \left(\frac{\partial u}{\partial t}(x,t) \right)^2 + \left(\frac{\partial u}{\partial x}(x,t) \right)^2 \, dx.$$

associated with a solution u(x,t) of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \qquad \qquad 0 < x < 1, \ t > 0.$$

Show that if the boundary conditions

$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(1,t) \quad \text{and} \quad \frac{\partial u}{\partial t}(0,t) = \frac{\partial u}{\partial t}(1,t)$$

are satisfied for all t > 0, then

$$E(t) = E(0), \quad t \ge 0.$$

8. (Note: Respond if WEBER is your instructor) Consider the second order differential equation on the domain [1, 2]:

$$x^{2}\frac{d^{2}f}{dx^{2}} + 4x\frac{df}{dx} + (\lambda - x^{2})f = 0, \ f(1) = 0, \ f(2) = 0.$$
 (0.1)

This is almost, but not quite, a Bessel-type differential equation.

a) Put the equation into Sturm-Liouville form. What are p(x), q(x), and $\sigma(x)$?

b) According to the Sturm-Liouville theory, the eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ come as a discrete list, and to each eigenvalue λ_n corresponds an eigenfunction $\varphi_n(x)$. The eigenfunctions satisfy certain orthogonality relations. For the differential equation (0.1), write out this relation in terms of the appropriate integral or integrals.

c) If $\{\lambda, \varphi(x)\}$ constitute an eigenvalue-eigenfunction pair for this Sturm-Liouville equation, show that necessarily $\lambda > 0$. Give a specific reason why $\lambda = 0$ is not actually an eigenvalue. (Hint: Remember the Rayleigh quotient.)