Math 241 Final Exam Spring 2014

NAME:

Instructor: Hynd Weber

Please clear your desk and put away all notes, books, electronic devices, etc. No outside material is allowed during the exam. Make sure to clearly indicate your responses; box your final answers if necessary.

My signature below certifies that I will comply with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Your signature

Question Number	Points Possible	Your Score
1	6	
2	6	
3	6	
4	6	
5	9	
6	9	
7	9	
8	9	
Total	60	

A Partial Table of Integrals

$$
\int_{0}^{x} u \cos n u d u=\frac{\cos n x+n x \sin n x-1}{n^{2}} \quad \text { for any real } n \neq 0
$$

$$
\int_{0}^{x} u \sin n u d u=\frac{\sin n x-n x \cos n x}{n^{2}} \quad \text { for any real } n \neq 0
$$

$$
\int_{0}^{x} e^{m u} \cos n u d u=\frac{e^{m x}(m \cos n x+n \sin n x)-m}{m^{2}+n^{2}} \quad \text { for any real } n, m
$$

$$
\int_{0}^{x} e^{m u} \sin n u d u=\frac{e^{m x}(-n \cos n x+m \sin n x)+n}{m^{2}+n^{2}} \quad \text { for any real } n, m
$$

$\int_{0}^{x} \sin n u \cos m u d u=\frac{m \sin n x \sin m x+n \cos n x \cos m x-n}{m^{2}-n^{2}} \quad$ for any real numbers $m \neq n$
$\int_{0}^{x} \cos n u \cos m u d u=\frac{m \cos n x \sin m x-n \sin n x \cos m x}{m^{2}-n^{2}} \quad$ for any real numbers $m \neq n$
$\int_{0}^{x} \sin n u \sin m u d u=\frac{n \cos n x \sin m x-m \sin n x \cos m x}{m^{2}-n^{2}} \quad$ for any real numbers $m \neq n$

Facts About Bessel Functions

- Bessel's equation: $r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\left(\alpha^{2} r^{2}-m^{2}\right) f(r)=0$ for each integer $m \geq 0$. The only solutions which are bounded at $r=0$ are $f(r)=c J_{m}(\sqrt{\alpha} r)$ for a constant c.
- Orthogonality relation: Writing $z_{m n}$ as the nth zero of $J_{m}(z)$,

$$
\int_{0}^{1} r J_{n}\left(z_{m n} r\right) J_{n}\left(z_{m k} r\right) d r=0, \quad n \neq k
$$

for each $m=0,1, \ldots$

Fourier Transform

$$
\mathcal{F}[u](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x) e^{i \omega x} d x, \quad \mathcal{F}^{-1}[U](x)=\int_{-\infty}^{\infty} U(\omega) e^{-i \omega x} d \omega
$$

Table of Fourier Transform Pairs $(\alpha, \beta>0)$

$u(x)=\mathcal{F}^{-1}[U]$	$U(\omega)=\mathcal{F}[u]$	$u(x)=\mathcal{F}^{-1}[U]$	$U(\omega)=\mathcal{F}[u]$
$e^{-\alpha x^{2}}$	$\frac{1}{\sqrt{4 \pi \alpha}} e^{-\frac{\omega^{2}}{4 \alpha}}$	$\sqrt{\frac{\pi}{\beta}} e^{-\frac{x^{2}}{4 \beta}}$	$e^{-\beta \omega^{2}}$
$e^{-\alpha\|x\|}$	$\frac{1}{2 \pi} \frac{2 \alpha}{x^{2}+\alpha^{2}}$	$\frac{2 \beta}{x^{2}+\beta^{2}}$	$e^{-\beta\|\omega\|}$
$u(x)=\left\{\begin{array}{ll\|l\|\|}0 & \|x\|>\alpha \\ 1 & \|x\|<\alpha\end{array}\right.$	$\frac{1}{\pi} \frac{\sin \alpha \omega}{\omega}$	$2 \frac{\sin \beta x}{x}$	$U(\omega)= \begin{cases}0 & \|\omega\|>\beta \\ 1 & \|\omega\|<\beta\end{cases}$

Laplacian in Polar Coordinates

$$
\nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}
$$

1. Consider the wave equation for a vibrating string

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L
$$

subject to the boundary conditions

$$
u(0, t)=u(L, t)=0 .
$$

Which of the following statements are correct? Note that these statements are graded +1 for each correct answer, -1 for each incorrect answer, 0 for no answer.
(a) u represents the horizontal displacement of the string. Y N
(b) Newton's second law was used to derive this equation. $\mathrm{Y} \quad \mathrm{N}$
(c) c has units of speed. $\quad \mathrm{Y} \quad \mathrm{N}$
(d) The model is valid for large displacements in the string. $\mathrm{Y} \quad \mathrm{N}$
(e) The endpoints of the string are fixed. $\quad \mathrm{Y} \quad \mathrm{N}$
(f) Increasing the length of the string, while keeping the density and tension fixed, will increase the frequency at which the string vibrates. Y N
2. (a) Write the forward time, centered spatial finite difference scheme for the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} .
$$

Here $0<x<L$ and $0<t<T$. Use the notation $u_{j}^{(m)}$ for the approximation of the values $u(j \Delta x, m \Delta t)$ for the true solution for $j=0,1, \ldots, N$, and $m=0,1, \ldots, M$.
(b) When is the approximation method from part (a) numerically stable?
3. Set

$$
f(x)=\left\{\begin{array}{lr}
x-1, & -1 \leq x \leq 0 \\
x+1, & 0<x \leq 1
\end{array}\right.
$$

(a) Compute the coefficients in the Fourier series of $f(x)$

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right) .
$$

(b) Plot the Fourier series of $f(x)$ on the interval $[-3,3]$.
4. (a) Find the harmonic function $u(r, \theta)$ on the disk $r^{2} \leq 1$ that satisfies the boundary condition

$$
u(1, \theta)=1+\sin (2 \theta)
$$

(b) Explain why this solution is always less than or equal to 2.
5. Solve the heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t>0
$$

subject to the initial condition

$$
u(x, 0)=e^{x} .
$$

6. Find $u(x, t)$ that satisfies the nonhomogeneous heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-\pi^{2} t} \sin (3 \pi x) \quad \text { for } 0<x<1, t>0
$$

with boundary conditions $u(0, t)=u(1, t)=0$ and initial condition $u(x, 0)=2$.
7. Consider a vibrating circular membrane of radius 1 that has no displacement on the boundary. The associated PDE is the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

(a) After separating time, we are lead to the eigenvalue problem

$$
\nabla^{2} \phi+\lambda \phi=0, \quad \phi(1, \theta)=0 .
$$

Separate variables $\phi(r, \theta)=f(r) g(\theta)$ and derive ODE for $f(r)$ and $g(\theta)$.
(b) Find the eigenvalues $\lambda_{m n}$ and the corresponding eigenfunctions $\phi_{m n}$. You may assume all eigenvalues are positive.
(c) Find a general solution $u(r, t)$ when the membrane is initially circularly symmetric

$$
u(r, 0)=\alpha(r), \quad \frac{\partial u}{\partial t}(r, 0)=0
$$

8. (Note: Respond if HYND is your instructor) Consider the energy

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left(\frac{\partial u}{\partial t}(x, t)\right)^{2}+\left(\frac{\partial u}{\partial x}(x, t)\right)^{2} d x
$$

associated with a solution $u(x, t)$ of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<1, t>0 .
$$

Show that if the boundary conditions

$$
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t) \quad \text { and } \quad \frac{\partial u}{\partial t}(0, t)=\frac{\partial u}{\partial t}(1, t)
$$

are satisfied for all $t>0$, then

$$
E(t)=E(0), \quad t \geq 0
$$

8. (Note: Respond if Weber is your instructor) Consider the second order differential equation on the domain $[1,2]$:

$$
\begin{equation*}
x^{2} \frac{d^{2} f}{d x^{2}}+4 x \frac{d f}{d x}+\left(\lambda-x^{2}\right) f=0, f(1)=0, f(2)=0 . \tag{0.1}
\end{equation*}
$$

This is almost, but not quite, a Bessel-type differential equation.
a) Put the equation into Sturm-Liouville form. What are $p(x), q(x)$, and $\sigma(x)$?
b) According to the Sturm-Liouville theory, the eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ come as a discrete list, and to each eigenvalue λ_{n} corresponds an eigenfunction $\varphi_{n}(x)$. The eigenfunctions satisfy certain orthogonality relations. For the differential equation (0.1), write out this relation in terms of the appropriate integral or integrals.
c) If $\{\lambda, \varphi(x)\}$ constitute an eigenvalue-eigenfunction pair for this Sturm-Liouville equation, show that necessarily $\lambda>0$. Give a specific reason why $\lambda=0$ is not actually an eigenvalue. (Hint: Remember the Rayleigh quotient.)

