
Math 241 Final Exam
Spring 2014

Name:

Instructor: Hynd Weber

Please clear your desk and put away all notes, books, electronic devices, etc.
No outside material is allowed during the exam. Make sure to clearly indicate
your responses; box your final answers if necessary.

My signature below certifies that I will comply with the University of Penn-
sylvania’s Code of Academic Integrity in completing this examination.

Your signature

Question Points Your

Number Possible Score

1 6

2 6

3 6

4 6

5 9

6 9

7 9

8 9

Total 60



A Partial Table of Integrals∫ x

0
u cosnu du =

cosnx+ nx sinnx− 1

n2
for any real n 6= 0∫ x

0
u sinnu du =

sinnx− nx cosnx

n2
for any real n 6= 0∫ x

0
emu cosnu du =

emx(m cosnx+ n sinnx)−m
m2 + n2

for any real n,m∫ x

0
emu sinnu du =

emx(−n cosnx+m sinnx) + n

m2 + n2
for any real n,m∫ x

0
sinnu cosmu du =

m sinnx sinmx+ n cosnx cosmx− n
m2 − n2

for any real numbers m 6= n∫ x

0
cosnu cosmu du =

m cosnx sinmx− n sinnx cosmx

m2 − n2
for any real numbers m 6= n∫ x

0
sinnu sinmu du =

n cosnx sinmx−m sinnx cosmx

m2 − n2
for any real numbers m 6= n

Facts About Bessel Functions

• Bessel’s equation: r2f ′′(r) + rf ′(r) + (α2r2 −m2)f(r) = 0 for each integer m ≥ 0. The only
solutions which are bounded at r = 0 are f(r) = cJm(

√
αr) for a constant c.

• Orthogonality relation: Writing zmn as the nth zero of Jm(z),∫ 1

0
rJn(zmnr)Jn(zmkr) dr = 0, n 6= k

for each m = 0, 1, . . .

Fourier Transform

F [u](ω) =
1

2π

∫ ∞
−∞

u(x)eiωxdx, F−1[U ](x) =

∫ ∞
−∞

U(ω)e−iωxdω

Table of Fourier Transform Pairs (α, β > 0)

u(x) = F−1[U ] U(ω) = F [u] u(x) = F−1[U ] U(ω) = F [u]
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u(x) =

{
0 |x| > α

1 |x| < α

1

π

sinαω

ω
2

sinβx

x
U(ω) =

{
0 |ω| > β

1 |ω| < β

Laplacian in Polar Coordinates

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2



1. Consider the wave equation for a vibrating string

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L

subject to the boundary conditions

u(0, t) = u(L, t) = 0.

Which of the following statements are correct? Note that these statements are graded +1
for each correct answer, −1 for each incorrect answer, 0 for no answer.

(a) u represents the horizontal displacement of the string. Y N

(b) Newton’s second law was used to derive this equation. Y N

(c) c has units of speed. Y N

(d) The model is valid for large displacements in the string. Y N

(e) The endpoints of the string are fixed. Y N

(f) Increasing the length of the string, while keeping the density and tension
fixed, will increase the frequency at which the string vibrates. Y N



2. (a) Write the forward time, centered spatial finite difference scheme for the heat equation

∂u

∂t
=
∂2u

∂x2
.

Here 0 < x < L and 0 < t < T . Use the notation u
(m)
j for the approximation of the values

u(j∆x,m∆t) for the true solution for j = 0, 1, . . . , N , and m = 0, 1, . . . ,M.

(b) When is the approximation method from part (a) numerically stable?



3. Set

f(x) =

{
x− 1, −1 ≤ x ≤ 0

x+ 1, 0 < x ≤ 1
.

(a) Compute the coefficients in the Fourier series of f(x)

f(x) ∼ a0 +
∞∑
n=1

(an cos(nπx) + bn sin(nπx)).



(b) Plot the Fourier series of f(x) on the interval [−3, 3].



4. (a) Find the harmonic function u(r, θ) on the disk r2 ≤ 1 that satisfies the boundary condition

u(1, θ) = 1 + sin(2θ).

(b) Explain why this solution is always less than or equal to 2.



5. Solve the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
, −∞ < x <∞, t > 0

subject to the initial condition
u(x, 0) = ex.



6. Find u(x, t) that satisfies the nonhomogeneous heat equation

∂u

∂t
=
∂2u

∂x2
+ e−π

2t sin(3πx) for 0 < x < 1, t > 0

with boundary conditions u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = 2.



7. Consider a vibrating circular membrane of radius 1 that has no displacement on the boundary.
The associated PDE is the wave equation

∂2u

∂t2
= c2∇2u.

(a) After separating time, we are lead to the eigenvalue problem

∇2φ+ λφ = 0, φ(1, θ) = 0.

Separate variables φ(r, θ) = f(r)g(θ) and derive ODE for f(r) and g(θ).



(b) Find the eigenvalues λmn and the corresponding eigenfunctions φmn. You may assume
all eigenvalues are positive.



(c) Find a general solution u(r, t) when the membrane is initially circularly symmetric

u(r, 0) = α(r),
∂u

∂t
(r, 0) = 0.



8. (Note: Respond if Hynd is your instructor) Consider the energy

E(t) =
1

2

∫ 1

0

(
∂u

∂t
(x, t)

)2

+

(
∂u

∂x
(x, t)

)2

dx.

associated with a solution u(x, t) of the wave equation

∂2u

∂t2
=
∂2u

∂x2
0 < x < 1, t > 0.

Show that if the boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(1, t) and

∂u

∂t
(0, t) =

∂u

∂t
(1, t)

are satisfied for all t > 0, then
E(t) = E(0), t ≥ 0.



8. (Note: Respond if Weber is your instructor) Consider the second order differential equation
on the domain [1, 2]:

x2
d2f

dx2
+ 4x

df

dx
+
(
λ− x2

)
f = 0, f(1) = 0, f(2) = 0. (0.1)

This is almost, but not quite, a Bessel-type differential equation.

a) Put the equation into Sturm-Liouville form. What are p(x), q(x), and σ(x)?

b) According to the Sturm-Liouville theory, the eigenvalues {λn}∞n=1 come as a discrete
list, and to each eigenvalue λn corresponds an eigenfunction ϕn(x). The eigenfunctions
satisfy certain orthogonality relations. For the differential equation (0.1), write out this
relation in terms of the appropriate integral or integrals.



c) If {λ, ϕ(x)} constitute an eigenvalue-eigenfunction pair for this Sturm-Liouville equa-
tion, show that necessarily λ > 0. Give a specific reason why λ = 0 is not actually an
eigenvalue. (Hint: Remember the Rayleigh quotient.)


