(1) 10 POINTS Derive the heat equation for a one-dimensional rod assuming that the cross-sectional area $A(x)$ is a non-constant function of x, where $0<x<L$. Assume all other thermal properties are constant, and there is no heat source.

Answer:

$$
c \rho A(x) \frac{\partial u}{\partial t}(x, t)=K_{0} \frac{\partial}{\partial x}\left(A(x) \frac{\partial u}{\partial x}(x, t)\right)
$$

(2) 10 POINTS The function $u(r, \theta)$ describes the steady state temperature distribution in a thin plate R shaped as an anulus with outer radius 2 and inner radius 1 . Suppose that heat flux across the boundary of R is given by $u_{r}(1, \theta)=2$ for the inner circle, and $u_{r}(2, \theta)=c \sin ^{2}(3 \theta)$ for the outer circle.
(a) (4 points) What must the value of the constant c ? That is: what must the value of c be so that the boundary value problem

$$
\begin{aligned}
\nabla^{2} u & =0 \\
u_{r}(1, \theta) & =2 \\
u_{r}(2, \theta) & =c \sin ^{2}(3 \theta)
\end{aligned}
$$

will have a solution.
(b) (6 points) Find the general solution $u(r, \theta)$, you don't need to compute the coefficients.

Answer:

(a) $c=2$.
(b)
$u(r, \theta)=A_{0}+B_{0} \ln r+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(A_{m, n} r^{n} \cos m \theta+B_{m, n} r^{-n} \cos m \theta+C_{m, n} r^{n} \sin m \theta+D_{m, n} r^{-n} \sin m \theta\right)$
(3) 10 points Denote by $g(x)$ the Fourier sine series of the function e^{x} on the interval $[0,1]$, that is,

$$
e^{x} \sim \sum_{n=1}^{\infty} b_{n} \sin n \pi x=: g(x)
$$

Decide whether the following statements are true or false. To obtain the full credit, you must justify your reasoning.
(i) (2.5 points) g is an even function.
(ii) (2.5 points) g is periodic.
(iii) (2.5 points) g is bounded.
(iv) (2.5 points) $g(1)=e$.

True / False
True / False
True / False
True / False

Answer:

(i) F.
(ii) T .
(iii) T .
(iv) F.
(4) 10 POINTS Let $u(x, t)$ be the vertical displacement of a vibrating string with $1<x<3$. The string has free boundaries, and has constant density $\rho=4$ and tension with constant magnitude $T=1$ and thus obeys the wave equation $4 u_{t t}=u_{x x}$, with boundary conditions $u_{x}(1, t)=0$ and $u_{x}(3, t)=0$. The initial position and velocity are given by $u(x, 0)=0$ and $u_{t}(x, 0)=\sqrt{2 x}$ for all $1<x<3$. Calculate the total energy

$$
E(t)=\frac{1}{2} \int_{1}^{3}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) d x
$$

of the string.

Answer:

$E(t)=16$.
(5) 10 POINTS Estimate the large eigenvalues for the following eigenvalue problem:

$$
\left\{\begin{array}{l}
\frac{d}{d x}\left(e^{2 x} \frac{d \phi}{d x}\right)+\left(\lambda e^{4 x}+e^{3 x}\right) \phi=0 \text { for } 0<x<1 \\
\phi(0)=\phi(1)=0
\end{array}\right.
$$

Answer:

$$
\lambda_{n} \sim\left(\frac{n \pi}{e-1}\right)^{2}
$$

(6) 10 POINTS Let $u(\rho, \theta, \phi)$ be a solution of the Laplace equation $\nabla^{2} u=0$ inside a sphere of radius 2 centered at the origin, subject to the boundary condition $u(2, \theta, \phi)=5 P_{2}^{0}(\cos \phi)$, where $P_{2}^{0}(x)$ is the associated Legendre function of the first kind.
(a) (5 points) Compute $u(1, \pi, 0)$.
(b) (5 points) Compute $\lim _{\rho \rightarrow 0} u(\rho, \pi, 0)$.

Answer:
(a)

$$
u(1, \pi, 0)=\frac{5}{4} P_{2}^{0}(1)=\frac{5}{4}
$$

(b)

$$
\lim _{\rho \rightarrow 0} u(\rho, \pi, 0)=0
$$

In fact,

$$
u(\rho, \theta, \phi)=\frac{5}{8} \rho^{2}\left(3 \cos ^{2} \phi-1\right)
$$

(7) 10 POINTS Solve the Poisson equation in a unit disk $(r<1,-\pi \leq \theta \leq \pi)$:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=r^{3}
$$

subject to the boundary condition

$$
u(1, \theta)=\sin \theta
$$

Answer:

$$
u(r, \theta)=\frac{r^{5}-1}{25}+r \sin \theta
$$

(8) 10 POINTS Compute the Fourier transforms of the following functions
(a) (3 points) $2 e^{-x^{2} / 9}$,
(b) (4 points) $e^{-(x+1)^{2}} * e^{-(x-1)^{2}}$,
(c) $(3$ points $) \frac{d^{3}}{d x^{3}} e^{-x^{2}}$

Answer:
(a)

$$
6 \sqrt{\pi} e^{-\frac{9 \omega^{2}}{4}}
$$

(b)

$$
\frac{1}{2} e^{-\frac{\omega^{2}}{2}}
$$

(c)

$$
\frac{i \omega^{3}}{2 \sqrt{\pi}} e^{-\frac{\omega^{2}}{4}}
$$

