(1) 10 POINTS Let $u:=u(x, t)$ be the temperature in a one-dimensional rod, and satisfy the following initial and boundary value problem:

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}+\beta x \quad \text { for } 0<x<2, t>0, \\
\partial_{x} u(0, t) & =0 \quad \text { and } & \partial_{x} u(2, t)=-2, \\
u(x, 0) & =\frac{8}{\pi} \cos \frac{\pi}{4} x,
\end{array}
$$

where β is a constant. Denote the total thermal energy in the $\operatorname{rod}(0<x<2)$ by

$$
E(t):=\int_{0}^{2} u(x, t) d x
$$

Answer the following questions.
(i) (2 Points) What is the physical meaning of the boundary condition $\partial_{x} u(0, t)=0$?
(ii) (3 Points) Verify that

$$
\frac{d E}{d t}=-2+2 \beta
$$

(iii) (3 Points) Using part (ii), compute E.
(iv) (2 Points) For which value of β does the limit $\lim _{t \rightarrow \infty} E(t)$ exist, and what is the limit?

Answer:

(i) Meaning the left end is insulated.
(ii)

$$
\frac{d E}{d t}=\int_{0}^{2} u_{t} d x=\int_{0}^{2}\left(u_{x} x+\beta x\right) d x=u_{x}(2, t)-u_{x}(0, t)+2 \beta=-2+2 \beta
$$

(iii) $E(t)=\frac{32}{\pi^{2}}+t(2 \beta-2)$
(iv) $\beta=1$, limit is $\frac{32}{\pi^{2}}$.
(2) 10 POINTS Consider the following boundary value problem for a heat conduction in a rod:

$$
\left\lvert\, \begin{aligned}
u_{t} & =4 u_{x x}-2 u, \quad \text { on } 0<x<1 \\
u(0, t) & =0 \\
u(1, t) & =0
\end{aligned}\right.
$$

(a) (5 points) Separate variables and determine all product solutions of this problem.
(b) (5 points) Find the solution for which the initial temperature is $u(x, 0)=3 \sin (\pi x)+\sin (3 \pi x)$.

Answer:

(a)

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{\left(-4 n^{2} \pi^{2}-2\right) t} \sin n \pi x
$$

(b)

$$
u(x, t)=3 e^{\left(-4 \pi^{2}-2\right) t} \sin \pi x+e^{\left(-36 \pi^{2}-2\right) t} \sin 3 \pi x
$$

(3) 10 POINTS Let $f(x)$ be a piecewise smooth function. Denote by $g(x)$ the Fourier series of the function $f(x)$ on the interval $[-\pi, \pi]$, that is,

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x=: g(x)
$$

Decide whether the following statements are true or false. To obtain full credit, you must justify your answers.
(i) (2.5 points) If f is an odd function, then $b_{n}=0$ for all $n=1,2, \cdots . \quad \mathrm{T} / \mathrm{F}$
(ii) (2.5 points) If f is continuous, then g must be continuous.

T/F
(iii) (2.5 points) If f is bounded, then g must be bounded.

T/F
(iv) (2.5 points) For any given function f, the Fourier coefficient b_{n} can be computed by $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$.

T/F

Answer:

(i) F .
(ii) F.
(iii) T .
(iv) F.
(4) 10 POINTS Solve the damped wave equation

$$
u_{t t}=u_{x x}-u_{t}, \quad 0<x<1, t>0
$$

with initial conditions

$$
\begin{aligned}
u(x, 0) & =\sin (2 \pi x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

and boundary conditions

$$
\begin{aligned}
& u(0, t)=0 \\
& u(1, t)=0 .
\end{aligned}
$$

Answer:

$$
u(x, t)=\sin 2 \pi x\left(e^{-\frac{t}{2}} \cos \sqrt{16 \pi^{2}-1} t+\frac{1}{2 \sqrt{16 \pi^{2}-1}} e^{-\frac{t}{2}} \sin \sqrt{16 \pi^{2}-1} t\right)
$$

(5) 10 POINTS Consider the eigenvalue problem

$$
\left\{\begin{aligned}
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{4}\right) \phi & =0 \\
\frac{d \phi}{d x}(0)=\frac{d \phi}{d x}(1) & =0
\end{aligned}\right.
$$

Answer the following questions.
(i) (2 points) Is the above eigenvalue problem a regular Sturm-Liouville eigenvalue problem?
(ii) (5 points) Show that all eigenvalues λ are non-negative.
(iii) (3 points) Is $\lambda=0$ an eigenvalue?

Answer:

(i) Yes.
(ii) Use Rayleigh quotient.
(iii) No.
(6) 10 POINTS The displacement function $u(r, \theta, t)$ describing the vibration of a circular membrane $D: 0<r<2,-\pi<\theta<\pi$ satisfies the boundary value problem

$$
\left\lvert\, \begin{aligned}
u_{t t} & =9 \nabla^{2} u \text { on } D \\
u(2, \theta, t) & =0 \\
u(r, \theta, 0) & =0 \\
u_{t}(r, \theta, 0) & =-J_{0}\left(\frac{z_{6}}{2} r\right),
\end{aligned}\right.
$$

where $J_{0}(z)$ is the 0 -th Bessel function of the first kind with roots $z_{1}, z_{2}, \ldots, z_{n}, \ldots$.
(a) (7 points) Compute $u(r, \theta, t)$.
(b) (3 points) Find the value $u\left(2, \frac{\pi}{6}, 1\right)$.

Answer:

(a)

$$
u(r, \theta, t)=-\frac{2}{3 z_{6}} \sin \frac{3 z_{6} t}{2} J_{0}\left(\frac{z_{6} r}{2}\right)
$$

(b)

$$
u\left(2, \frac{\pi}{6}, 1\right)=0
$$

(7) 10 POINTS Let $u:=u(x, t)$ satisfy the following initial and boundary value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}+x+2 e^{-\frac{\pi^{2}}{4} t} \sin \frac{\pi x}{2} \quad \text { for } 0<x<1, t>0 \\
u(0, t) & =0 \\
\frac{\partial u}{\partial x}(1, t) & =t \\
u(x, 0) & =5 \sin \frac{3 \pi x}{2} .
\end{aligned}
$$

Answer the following questions.
(ii) (8 Points) Find the solution u to the above initial and boundary value problem.
(iii) (2 Points) Prove or disprove

$$
\lim _{t \rightarrow \infty} u(1, t)=0
$$

Answer:

(ii)

$$
u(x, t)=2 t \sin \frac{\pi x}{2} e^{-\frac{\pi^{2} t}{4}}+5 \sin \frac{3 \pi x}{2} e^{-\frac{9 \pi^{2} t}{4}}+x t
$$

(iii) No, the limit is ∞.

Mysterious enough, this problem doesn't have part (i).
(8) 10 POINTS Let $u(x, t)$ be the solution of

$$
\begin{aligned}
u_{t} & =2 u_{x x}, \quad-\infty<x<\infty, t>0, \\
u(x, 0) & =\sin (3 \pi x) .
\end{aligned}
$$

(a) (3 points) Use Euler's formula to rewrite the initial data in terms of exponentials.
(b) (7 points) Use a Fourier transform in x to find $u(x, t)$.

Answer:

(a)

$$
\sin 3 \pi x=\frac{e^{3 \pi i x}-e^{-3 \pi i x}}{2 i}
$$

(b)

$$
u(x, t)=\sin (3 \pi x) e^{-18 \pi^{2} t}
$$

