Math 241

Final examination

Instructions. Answer the following problems carefully and completely. Show all your work. Do not use a calculator. You may use both sides of one $8 \frac{1}{2} \times 11$ sheet of paper for handwritten notes you wrote yourself. Please turn in your sheet of notes with your exam. There are 100 points possible. Good luck!

Name \qquad
Instructors's name \qquad
TA's name and time \qquad
1.
(2) \qquad
2. \qquad
3.
(6) \qquad
4.
(2) \qquad
5.
(3) \qquad
6.
(8) \qquad
7. (8) \qquad
8.
(5) \qquad
9.
(5) \qquad
10. \qquad
11.
(11) \qquad
12. \qquad
13.
(6) \qquad
14.
(14) \qquad
Total (100) \qquad

Here are some integrals you can use:

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-x} \sin (c x) d x & =\frac{2 c}{\left(1+c^{2}\right)^{2}} \\
\int_{0}^{\infty} x e^{-x} \cos (c x) d x & =\frac{1-c^{2}}{\left(1+c^{2}\right)^{2}}
\end{aligned}
$$

1. Write whether the following statement is true or false. (You do not need to show any work.) The product of an odd function f with an odd function g is an odd function.
2. Use a Fourier transform, a sine transform, or a cosine transform to find the displacement $u(x, t)$, for $x>0$ and $t>0$, of a semi-infinite string if

$$
u(0, t)=0, \quad u(x, 0)=x e^{-x}, \quad \text { and }\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0
$$

You may assume the constant a^{2} of the wave equation is equal to 1 . Your final answer may contain an integral.

Scratch paper
3. Find any two independent solutions $u(x, y)$ to the following PDE:

$$
\frac{\partial^{2} u}{\partial x \partial y}=u
$$

Neither of your solutions can be the zero function.
4. Find a and b real numbers such that

$$
\frac{10-5 i}{6+2 i}=a+i b
$$

5. Let

$$
\begin{aligned}
& z_{1}=2 \cos (\pi / 8)+2 i \sin (\pi / 8) \\
& z_{2}=4 \cos (3 \pi / 8)+4 i \sin (3 \pi / 8)
\end{aligned}
$$

Find a and b real numbers such that

$$
\frac{z_{1}}{z_{2}}=a+i b
$$

6. Show the complex function $f(z)=\bar{z}$ is not analytic at $z=0$.
7. Find all points z in \mathbb{C} satisfying the equation

$$
\sin z=2
$$

Write the solutions in the form $a+i b$ for a and b real numbers.
8. Compute the contour integral

$$
\oint_{C} \frac{z}{z^{2}-\pi^{2}} d z
$$

where C is the circle $|z|=3$.
9. Determine the pole(s) of $5-6 / z^{2}$. Find the order(s) of the pole(s). Compute the residue(s) at the pole(s).
10. Determine the pole(s) of

$$
\frac{1}{1-e^{z}}
$$

Find the order(s) of the pole(s). Compute the residue(s) at the pole(s).

Scratch paper
11. Compute the integral

$$
\int_{0}^{\pi} \frac{1}{5+4 \cos \theta} d \theta
$$

Scratch paper
12. Let C be the curve in the complex plane parametrized by $C(t)=\cos (t)+i \sin (t)$, for $0 \leq t \leq \pi$. (Note the $\pi!$) Compute the value of the contour integral

$$
\int_{C} \frac{d z}{z^{2}}
$$

13. Consider the function

$$
f(x)= \begin{cases}0 & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } 1<x \leq 2\end{cases}
$$

defined on the interval $[0,2]$. Let

$$
\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{2}\right)
$$

be a sine series for $f(x)$. Using the same values for B_{n}, for all x in the real line define a function

$$
g(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{2}\right) .
$$

Find $g(-5 / 2)$ and $g(-5)$.
14. Solve the Laplace equation $u_{x x}+u_{y y}=0$ for a function $u(x, y)$ with $0 \leq x \leq 2$, $0 \leq y \leq 1$ and boundary conditions:

$$
\begin{gathered}
u(0, y)=0, \quad \frac{\partial u}{\partial x}(2, y)=0, \quad u(x, 0)=0 \\
u(x, 1)=3 \sin \left(\frac{\pi x}{4}\right)-2 \sin \left(\frac{5 \pi x}{4}\right)
\end{gathered}
$$

Scratch paper

More scratch paper

