Math 241 Final Exam Spring 2003 University of Pennsylvania

May 1, 2003

No books, tables or calculators allowed. One 8 ½"x11" sheet of notes is permitted. You must show work to get credit. All questions are worth 10 points with no partial credit. **Circle the entire answer you deem correct**. Write your information below; write your name on every page.

Name:

Signature:

Penn ID#:_____

Please do not write below this line

SCORE:

1) Which of the following are two solutions to the equation $(z-2)^4 = -1$

a) $e^{\pi i/4}$ and $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ b) $-2 + e^{\pi i}$ and $\left(-2 + \frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2}i$ c) $-2 + e^{\pi i/4}$ and $\left(-2 + \frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2}}{2}i$ f) $2 + e^{5\pi i/4}$ and $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$

2) Evaluate \$\ointig \overline dz dz\$ where C is the circle of radius 3 centered at 0.
a) 2πi
b) 6πi
c) 0

c) 12π*i*

f) Does not exist

3) Suppose that $\sum_{n=0}^{\infty} a_n (x-1)^n$ is the Taylor series centered at 1 for the real valued function $f(x) = \frac{1}{x^2 + 2x + 2}$. Which of the following is true about the radius of convergence R of this series?

3

a) R = 0b) R = 1c) $R = \sqrt{2}$ d) R = 2e) $R = \sqrt{5}$ f) R = 3g) R is infinite

4) Evaluate $\int_{\gamma} \frac{1+z}{1-\cos z} dz$ where γ is the circle centered at $\frac{1}{2}$ with radius 1.

- a) $6\pi i$ b) $4\pi i$ c) $-2\pi i$
- c) $2\pi i$ f) None of these.

- 5) Evaluate the real integral $\int_{0}^{2\pi} \frac{d\theta}{5-4\cos\theta}$. a) $\frac{2\pi}{3}$ b) $-\frac{2\pi}{3}$ c) $\frac{4\pi}{3}$ c) $\frac{4\pi}{3}$ c) $\frac{4\pi}{3}$
 - c) 2π*i*

f) None of these.

- 6) Suppose that f(x) is periodic with period 4 and that for -2 < x < 2 the function is defined to be $f(x) = \begin{cases} -x & \text{for } -2 < x < 0 \\ x & \text{for } 0 < x < 2 \end{cases}$. Which of the following is the coefficient of $\cos \frac{3\pi x}{2}$ in the Fourier Series of f(x):
 - a) $-\frac{8}{\pi^2}$ b) $\frac{8}{\pi^2}$ c) $\frac{8}{9\pi^2}$ d) $-\frac{8}{9\pi^2}$ e) $\frac{8}{3\pi^2}$ f) None of these.

7) Suppose that a periodic function g(x) with period 2π is represented by the Fourier Series $\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + ... \right) + \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{2} \sin 3x - ... \right)$.

Which of the following is the graph of g(x)?



- 8) Heat flow on a bar of length π is given by the partial differential equation $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2} \text{ for } 0 < x < \pi \text{ and } t > 0 \text{ with boundary conditions } u(0,t) = u(\pi,t) = 0$ and initial conditions $u(x,0) = \begin{cases} x & \text{for } 0 < x < \pi/2 \\ \pi - x & \text{for } \pi/2 < x < \pi \end{cases}$. Find the coefficient of $e^{-50t} \sin 5x$ in the solution.
 - a) $\frac{4}{25\pi}$ b) $\frac{1}{25}$ c) $\frac{1}{25\pi}$ d) $-\frac{1}{9}$ e) $\frac{4}{9\pi}$ f) None of these

9) Which one of the following is a solution of the partial differential equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} \text{ where } u(0,t) = u(\pi,t) = 0 \text{ for all } t?$

a)
$$e^{2x} \cos t$$

b) $e^{x/2}e^{t}$
c) $(\sin 3x)(\sin 6t)$
d) $(\sin 7x)e^{14t}$
e) $(\sin \frac{3x}{2})(\cos 3t)$
f) $(\cos \frac{5x}{2})(\sin 5t)$

10) Suppose that u(x, y) satisfies Laplace's equation $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on the rectangle $0 \le x \le 1, 0 \le y \le 2$ satisfying the boundary conditions u(x, 0) = u(x, 2) = u(0, y) = 0 and $u(1, y) = \sin 3\pi y$. Find $u\left(\frac{1}{2}, \frac{1}{2}\right)$:

a) $\frac{\left(e^{3\pi/2} - e^{-3\pi/2}\right)}{\left(e^{3\pi} - e^{-3\pi}\right)}$ b) $e^{3\pi/2} - e^{-3\pi/2}$ c) $e^{3\pi} - e^{-3\pi}$ d) 1 e) 0 f) None of these.

11) The Laurent Series for the function $\frac{z}{z^3-1}$ valid on the annulus $\frac{1}{2} < |z-1| < 1$ is

- a) $\frac{1}{3(z-1)} + 1 + \frac{1}{9}(z-1) + \frac{1}{9}(z-1)^2 + \dots$
- b) $\frac{-1}{3(z-1)} 1 \frac{1}{9}(z-1) + \frac{1}{9}(z-1)^2 + \dots$
- c) $\frac{1}{3(z-1)} + \frac{1}{9}(z-1) + \frac{1}{9}(z-1)^2 + \dots$
- d) $\frac{1}{3(z-1)} \frac{1}{9}(z-1) + \frac{1}{9}(z-1)^2 + \dots$
- e) $\frac{1}{3(z-1)} \frac{1}{9}(z-1) \frac{1}{9}(z-1)^2 + \dots$
- f) None of these.

- 12) For the Fourier Series for the function $f(x) = \sin^4 x$, which of the following is true?
 - a) $a_1 = b_1 = 0, a_2 = -\frac{1}{2}, a_3 = 1$
 - b) all coefficients a_k are zero.
 - c) $a_2 = -\frac{1}{2}, a_4 = \frac{1}{8}$, and all coefficients b_k are zero.
 - d) $a_1 = \frac{1}{2}, a_2 = -\frac{1}{2}$, and all coefficients b_k are zero.
 - e) $a_3 = a_4 = \frac{1}{8}$, and all other coefficients are zero.
 - f) None of the above.
- 13) For the region which is the interior of the circle or radius 3 with center at 0, a complex function is defined by $f(z) = \frac{1}{2\pi i} \int \frac{w \cdot \overline{w}}{w z} dw$, where γ is the boundary of the region. Then at $z = \frac{1}{2}$...
 - a) $f\left(\frac{1}{2}\right) = f'\left(\frac{1}{2}\right) = 0$ b) $f'\left(\frac{1}{2}\right) = f''\left(\frac{1}{2}\right) = 0$ c) $f\left(\frac{1}{2}\right) = f''\left(\frac{1}{2}\right) = 0$ d) $f'\left(\frac{1}{2}\right) = 0$, but $f\left(\frac{1}{2}\right)$ and $f''\left(\frac{1}{2}\right) = 0$, but $f\left(\frac{1}{2}\right)$ and $f''\left(\frac{1}{2}\right)$ are not 0.
 - f) None of these

- 14) The vibrations of a certain string of length π satisfy the partial differential equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, have the geometric boundary conditions $u(0,t) = u(\pi,t) = 0$ for all t, and satisfy the initial conditions u(x,0) = 0 for all x, and $\frac{\partial u}{\partial t}(x,0) = \sin x$. Then $u\left(\frac{\pi}{2}, \frac{\pi}{3}\right)$ is: a) $-\frac{\sqrt{3}}{2}$ b) $\frac{\sqrt{3}}{2}$
 - b) $\frac{1}{2}$ c) $\frac{1}{2}$ f) $-\sqrt{3}$

- 15) For the function defined by f(x) = ix, for $0 < x < 2\pi$, extended to be 2π -periodic, the complex Fourier Series is:
 - a) $i\pi + \sum_{k=1}^{\infty} \frac{1}{k} \left(e^{ikx} e^{-ikx} \right)$ b) $i\pi + \sum_{k=1}^{\infty} \frac{1}{k} e^{ikx}$ c) $i\pi - \sum_{k=1}^{\infty} \frac{1}{k^2} \left(e^{ikx} - e^{-ikx} \right)$ f) None of these.

16) The value of the integral $\int_0^\infty \frac{x^2 dx}{1+x^4}$ is a) $\pi\sqrt{2}$ d) $\frac{\pi}{2}$ b) $\frac{\pi\sqrt{2}}{2}$ e) $2\pi\sqrt{2}$ c) $\frac{\pi\sqrt{2}}{4}$ f) π

17) The sum of the power series $\sum_{n=0}^{\infty} (2n+1)z^{2n}$, valid for |z| < 1, is the function...

d) $\frac{1+z^2}{(1-z^2)^2}$ a) $\frac{z^2}{1-z^2}$ b) $\frac{z^2}{1+z^2}$ e) $\frac{1-z^2}{(1+z^2)^2}$ c) $\frac{1+z^2}{1-z^2}$

f) None of these.

18) The value of the integral $\frac{1}{2\pi i} \oint \frac{(\cos z)dz}{(z - (\pi/4))^2}$, where C is the unit circle, |z| = 1, is:

a)
$$-\frac{\sqrt{2}}{4}$$

b) $\frac{\sqrt{2}}{4}$
c) $-\frac{\sqrt{2}}{2}$
d) $\frac{\sqrt{2}}{2}$
e) $-\frac{1}{2}$
f) $\frac{1}{2}$

19) The residue of the function
$$\frac{1}{(z-1)(z^3-1)}$$
 at $z=1$ is:
a) $\frac{2}{3}$
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
d) $-\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ at $z=1$ is:
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
f) None of the function $\frac{1}{(z-1)(z^3-1)}$ f) for $z=1$

f) None of these.

Name:__

20) Two values of
$$(\sqrt{2})^i$$
 are:
a) $(\cos(\log 2) + i\sin(\log 2))$ and $e^{2\pi} (\cos(\log 2) + i\sin(\log 2))$
b) $\left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$ and $e^{-6\pi} \left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$
c) $\left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$ and $e^{3\pi} \left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$
d) $\left(\cos(\log 2) + i\sin(\log 2)\right)$ and $e^{\pi} \left(\cos(\log 2) + i\sin(\log 2)\right)$
e) $e^{\pi} \left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$ and $e^{2\pi} \left(\cos\left(\frac{1}{2}\log 2\right) + i\sin\left(\frac{1}{2}\log 2\right)\right)$
f) None of these.