1. Find the Fourier series for the function $f(x)=\left\{\begin{array}{c}-1-x,-1<x<0 \\ 1-x, 0<x<1\end{array}\right.$. Write out terms through $n=3$.
2. Solve the one-dimensional heat equation for a laterally insulated bar of length π whose ends are held at 0° and across which the initial temperature distribution is given by $f(x)=\left\{\begin{array}{c}x,<x<\frac{\pi}{2} \\ \pi-x, \frac{\pi}{2}<x<\pi\end{array}\right.$.
3. Find all product solutions for $u(x, y)$ if $x u_{x}-y u_{y}=0$.
4. Find all of the cube roots of $z=4+i 4 \sqrt{3}$. Sketch the roots in the complex plane.
5. Which, if any of the functions listed below are analytic in the domain $z \neq 0$?
a) $\log z$
b) $\frac{1}{z^{2}}$
c) $\frac{1}{e^{z}}$
6. Is there a function $v(x, y)$ corresponding to $u(x, y)=x^{3}-y^{3}+6 x y$ such that $f(z)=u(x, y)+i v(x, y)$ is an analytic complex function? If such a v exists, find it, write $f(z)$ and compute $f^{\prime}(z)$.
7. Evaluate $\int_{C} z \bar{z} d z$ if C is the straight line from $z=0$ to $z=2+4 i$.
8. Evaluate $\int_{C} \sin z d z$ where C is the semi-circle $|z|=1$ in the upper half-plane starting at $z=1$ and ending at $z=-1$.
9. Evaluate $\oint_{C} \frac{7 z-6}{z^{2}-2 z} d z$ where C is the ellipse $\frac{(x-1)^{2}}{9}+y^{2}=1$.
10. Find the Maclaurin series for $f(z)=\arctan (z)$ and determine the radius of convergence of your series by some suitable means. \{HINT: first find a series for the derivative $f^{\prime}(z)=\frac{1}{z^{2}+1}$ then integrate that series termwise. $\}$
11. Write out the first four terms of the Laurent series for $f(z)=z^{2} \sin \left(\frac{1}{z}\right)$ with center $z_{0}=0$, then:
a) give the residue of $f(z)$ at $z=0$;
b) check one- $z_{0}=0$ is a pole of order \qquad ;
\square an essential singularity.
12. Evaluate the contour integral $\oint_{C} z^{3} e^{-1 / z^{2}} d z$ where C is any circle centered at the $z=0$ traversed in the clockwise direction.
13. Evaluate the real integral $\int_{0}^{2 \pi} \frac{1}{1+\cos \theta} d \theta$.
14. Evaluate the contour integral $\oint_{C} \frac{e^{z}}{z\left(z^{2}+\pi^{2}\right)} d z$ over each of the following (positively oriented) contours:
$\mathrm{a} 0|z|=4$
b) $|z-4 i|=2$
c) $|z-2|=1$
