Final examination, Math 241: Calculus IV April 29, 2002, 11:00AM-1:00PM

No books, papers, calculators or electronic device may be used, other than a hand-written note sheet at most $5^{\prime \prime} \times 7^{\prime \prime}$ in size. No questions will be answered or clarifications offered, during this exam.

This examination consists of ten multiple-choice questions and two short-answer question. The multiple-choice questions are worth eight (8) points each, with no partial credit. The correct and most appropriate answer to a multiple-choice question will be, in each case, just one of the five choices (A), (B), (C), (D) and (E). Answer all multiple-choice questions on the answer sheet, which is page 13 of this exam. Only the answers on the answer sheet will be considered for grading.

The short-answer questions are worth ten (10) points each. You must show all your work and fill in your answers at the underlined space; credit for these questions are based mostly on your short answers. Partial credit will be given only when a substantial part of a problem has been worked out. Merely displaying some formulas is not a sufficient ground for receiving partial credit.

For this posted version, the answers appear at the end of the exam.
1.. Let S be the set of all complex numbers w such that

$$
e^{w}(=\exp (w))=1+i \quad \text { and } \quad\left|e^{w^{2}}\right|\left(=\exp \left(w^{2}\right)\right)>1
$$

How many elements does the set S have? (In other words, how many complex numbers w are there satisfying both $e^{w}(:=\exp (w))=1+i$ and $\left|e^{w^{2}}\right|>1$?)
A. 0
B. 1
C. 2
D. 3
E. None of the above.
2. Let $f(x)$ be a periodic function on the real line with period 2π such that

$$
f(x)=\left\{\begin{array}{ccl}
0, & \text { if } & -\pi<x<0 \\
\pi-x & \text { if } & 0<x<\pi
\end{array}\right.
$$

Write the Fourier series expansion of $f(x)$ as

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n} \cos (n x)+\sum_{n=0}^{\infty} b_{n} \sin (n x) .
$$

Then the infinite series

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+\cdots
$$

A. converges to 0 .
B. converges to 2π.
C. converges to $\frac{\pi^{2}}{6}$.
D. converges to $\frac{\pi}{2}$.
E. diverges.
3. Consider the following five complex-valued functions in the complex variable $z=x+i y$:

$$
\begin{array}{ll}
f(z)=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} & g(z)=e^{z} \\
h(z)=x-i y^{2} & j(z)=\frac{z^{2}}{\cos \left(\frac{\pi z}{2}\right)} \\
k(z)=z^{100} &
\end{array}
$$

Which ones of the above functions are holomorphic (or, complex analytic) at $z=5$?
A. $f(z), g(z)$ and $k(z)$ only.
B. $f(z), g(z)$ and $h(z)$ only.
C. $f(z), g(z), h(z)$ and $j(z)$ only.
D. $g(z)$ and $k(z)$ only.
E. $f(z), g(z), h(z)$ and $k(z)$ only.
4. Denote by I the complex line integral

$$
I=\int_{C} z^{2} d z
$$

where C is the segment of the curve $y^{2}=4-x$ going from $(0,-2)$ to $(0,2)$.
What is the absolute value $|I|$ of this line integral?
A. $|I|=\frac{16}{3}$
B. $|I|=0$
C. $|I|=\frac{8}{3}$
D. $|I|=2 \pi$
E. None of the above.
5. Suppose that $u(x, t)$ is a function defined for $0 \leq x \leq 1, t \geq 0$ such that

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}} & =0 \text { for all } 0 \leq x \leq 1, \text { all } \mathrm{t} \geq 0 \\
\frac{\partial u}{\partial x}(0, t) & =0 \text { for all } t \geq 0 \\
\frac{\partial u}{\partial x}(1, t) & =0 \text { for all } t \geq 0 \\
u(x, 0) & =\cos (\pi x) \quad \text { for all } 0 \leq x \leq 1 \\
\frac{\partial u}{\partial t}(x, 0) & =\cos (3 \pi x) \quad \text { for all } 0 \leq x \leq 1
\end{aligned}
$$

What is the value of $u\left(\frac{1}{3}, \frac{1}{2}\right)$?
A. $\frac{1}{2}$
B. $-\frac{1}{3 \pi}$
C. 0
D. $\frac{\sqrt{2}}{4}$
E. None of the above
6. Which of the following complex line integral is not equal to 0 ?
A. $\oint_{|z|=1} \frac{d z}{z^{2}+9}$
B. $\oint_{|z|=1} \bar{z}^{-1} d z$
C. $\oint_{|z|=1} \frac{d z}{4 z^{2}-1}$
D. $\oint_{|z|=1} \frac{e^{z}-1}{z^{3}} d z$
E. None of the above
7. Suppose that $f(t)$ is a function defined for $t \geq 0$ such that its Laplace transform $\mathcal{L}\{f(t)\}(s)$ is equal to $\frac{e^{-3 s}}{(s-1)^{3}}$. What is the value of $f(5)$?
A. $5 e^{3}$
B. $2 e^{2}$
C. $\frac{25}{2} e^{2}$
D. $\frac{25}{2} e^{5}$
E. None of the above
8. Consider the Sturm-Liouville equation for a function $y(x)$ defined for $0 \leq x \leq \pi$:

$$
y^{\prime \prime}+\lambda y=0
$$

with boundary conditions

$$
y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0
$$

Let $\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ be the set of of all eigenvalues of the above equation, and let $y_{n}(x)$ be the eigenfunction for the eigenvalue λ_{n} such that $y(0)=1, n \geq 1$. Which one of the following statements is true?
A. $\int_{0}^{\pi} y_{n}^{2}(x) d x=0$ for all $n \geq 1$.
B. $\int_{0}^{\pi} x y_{m}(x) y_{n}(x) d x=0$ for all $m \neq n$.
C. $\lim _{n \rightarrow \infty} y_{n}(x)=0$.
D. $\sum_{n=0}^{\infty} y_{n}^{2}(x)$ converges for all $x \in[0, \pi]$.
E. None of the above
9. Let $u(x, t)$ be a function defined for $0 \leq x \leq \pi, t \geq 0$ such that

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial u}{\partial x}
$$

and

$$
\begin{aligned}
& u(0, t)=u(\pi, t)=0 \quad \text { for all } t \geq 0 \\
& u(x, 0)=e^{-\frac{x}{2}} \sin (x)
\end{aligned}
$$

What is the value of $u\left(\frac{\pi}{2}, 1\right)$?
A. $e^{-2-\frac{\pi}{4}}$
B. $e^{-1-\frac{\pi}{4}}$
C. $e^{-1}+e^{-\frac{\pi}{4}}$
D. $e^{-\frac{\pi}{4}}$
E. None of the above
10. Suppose that $u(x, y, z)$ is a function on \mathbb{R}^{3} which satisfies the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

and

$$
u(x, y, z)=5 z^{3} \quad \text { if } \quad x^{2}+y^{2}+z^{2}=1
$$

What is the value of $u(1,1,1)$?
(Notice that the values of $u(x, y, z)$ at the boundary sphere $\left\{x^{2}+y^{2}+z^{2}=1\right\}$ depends only on the angle ϕ with the positive z-axis, so that the solution $u(x, y, z)$ is symmetric under arbitrary rotation about the z-axis. The formula for the Laplacian in spherical coordinates is

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{r^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Some Legendre polynomials are: $P_{0}(w)=1, P_{1}(w)=w, P_{2}(w)=\frac{3 w^{2}-1}{2}, P_{3}(w)=\frac{5 w^{3}-3 w}{2}$.)
A. 5
B. 0
C. -1
D. 3
E. None of the above
11. The complex valued function $f(z)=\frac{e^{z}}{\cos z}$ has a Laurent series expansion centered at $z=0$, for $|z|<1 / 100$:

$$
f(z)=\frac{e^{z}}{\cos z}=\sum_{n=-\infty}^{\infty} a_{n} z^{n} \quad|z|<1 / 100
$$

Find the coefficients $a_{0}, a_{1}, a_{2}, a_{3}$.
Your Answer:
$a_{0}=$ \qquad
$a_{1}=$ \qquad
$a_{2}=$ \qquad
$a_{3}=$ \qquad
12. Suppose that $u(x, y)$ is a function defined for $x^{2}+y^{2} \leq 1$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

and

$$
u(x, y)=4 x^{2}+x \quad \text { if } \quad x^{2}+y^{2}=1
$$

Find a closed formula for $u(x, y)$, and use it to evaluate $u\left(\frac{1}{2}, \frac{1}{2}\right)$. (Recall that in polar coordinates, we have

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{1}{r^{2}}\left[\left(r \frac{\partial}{\partial r}\right)^{2}+\frac{\partial^{2}}{\partial \theta^{2}}\right] .
$$

You might want to use the method of separation of variables.)
Your Answer:
$u(x, y)=$ \qquad
$u\left(\frac{1}{2}, \frac{1}{2}\right)=$ \qquad

ANSWERS

1. A. (Since the real part of $\log (\sqrt{2})$ is less than $\frac{\pi}{4}$.)
2. D
3. A.
4. A.
5. E. $u(x, t)=\cos (\pi x) \cos (\pi t)+\frac{1}{3 \pi} \cos (3 \pi x) \sin (3 \pi t) ; u\left(\frac{1}{3}, \frac{1}{2}\right)=\frac{1}{3 \pi}$
6. D.
7. B. $f(5)=8 e^{2} ; f(t)=\frac{1}{2} u(t-3)(t-3)^{2} e^{t-3}$
8. E.
9. E. Separation of variables gives the general solution: $u(x, t)=\sum_{n} e^{-\left(4 n^{2}+1\right) t} e^{-\frac{x}{2}} \sin (n x)$. Using the initial conditions we get $u(x, t)=e^{-5 t} e^{-\frac{x}{2}} \sin (x)$. Thus $u\left(\frac{\pi}{2}, 1\right)=e^{-5-\frac{\pi}{4}}$.
10. C. $u(x, y, z)=2 r^{3} P_{3}(\cos \phi)+3 r P_{1}(\cos \phi)=-3 x^{2} z-3 y^{2} z+2 z^{3}+3 z, u(1,1,1)=-1$
11. $f(z)=1+z+z^{2}+\frac{2 z^{3}}{3}+\cdots$.
12. C. $u\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{5}{2} ; u(x, y)=2 x^{2}-2 y^{2}+x+2$
