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A Partial Table of Integrals∫ x

0

u cosnu du =
cosnx+ nx sinnx− 1

n2
for any real n 6= 0∫ x

0

u sinnu du =
sinnx− nx cosnx

n2
for any real n 6= 0∫ x

0

emu cosnu du =
emx(m cosnx+ n sinnx)−m

m2 + n2
for any real n,m∫ x

0

emu sinnu du =
emx(−n cosnx+m sinnx) + n

m2 + n2
for any real n,m∫ x

0

sinnu cosmu du =
m sinnx sinmx+ n cosnx cosmx− n

m2 − n2
for any real numbers m 6= n∫ x

0

cosnu cosmu du =
m cosnx sinmx− n sinnx cosmx

m2 − n2
for any real numbers m 6= n∫ x

0

sinnu sinmu du =
n cosnx sinmx−m sinnx cosmx

m2 − n2
for any real numbers m 6= n

Formulas Involving Bessel Functions

• Bessel’s equation: r2R′′ + rR′ + (α2r2 − n2)R = 0 – The only solutions of this which are bounded at r = 0 are
R(r) = cJn(αr).

Jn(x) =

∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)n+2k

.

J0(0) = 1, Jn(0) = 0 if n > 0. znm is the mth positive zero of Jn(x).

• Orthogonality relations:

If m 6= k then

∫ 1

0

xJn(znmx)Jn(znkx) dx = 0 and

∫ 1

0

x(Jn(znmx))2 dx =
1

2
Jn+1(znm)2.

• Recursion and differentiation formulas:

d

dx
(xnJn(x)) = xnJn−1(x) or

∫
xnJn−1(x) dx = xnJn(x) + C for n ≥ 1 (1)

d

dx
(x−nJn(x)) = −x−nJn+1(x) for n ≥ 0 (2)

J ′n(x) +
n

x
Jn(x) = Jn−1(x) (3)

J ′n(x)− n

x
Jn(x) = −Jn+1(x) (4)

2J ′n(x) = Jn−1(x)− Jn+1(x) (5)

2n

x
Jn(x) = Jn−1(x) + Jn+1(x) (6)

• Modified Bessel’s equation: r2R′′ + rR′ − (α2r2 + n2)R = 0 – The only solutions of this which are bounded at r = 0
are R(r) = cIn(αr).

In(x) = i−nJn(ix) =

∞∑
k=0

1

k!(k + n)!

(x
2

)n+2k

.
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Formulas Involving Associated Legendre and Spherical Bessel Functions

• Associated Legendre Functions: d
dφ

(
sinφ dgdφ

)
+
(
µ− m2

sinφ

)
g = 0. Using the substitution x = cosφ, this equation

becomes d
dx

(
(1− x2) dgdx

)
+
(
µ− m2

1−x2

)
g = 0. This equation has bounded solutions only when µ = n(n + 1) and

0 ≤ m ≤ n. The solution Pmn (x) is called an associated Legendre function of the first kind.

• Associated Legendre Function Identities:

P 0
n(x) =

1

2nn!

dn

dxn
(x2 − 1)n and Pmn (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x) when 1 ≤ m ≤ n

• Orthogonality of Associated Legendre Functions: If n and k are both greater than or equal to m,

If n 6= k then

∫ 1

−1
Pmn (x)Pmk (x)dx = 0 and

∫ 1

−1
(Pmn (x))

2
dx =

2(n+m)!

(2n+ 1)(n−m)!
.

• Spherical Bessel Functions: (ρ2f ′)′ + (α2ρ2 − n(n + 1))f = 0. If we define the spherical Bessel function jn(ρ) =

ρ−
1
2 Jn+ 1

2
(ρ), then only solution of this ODE bounded at ρ = 0 is jn(αρ).

• Spherical Bessel Function Identity:

jn(x) = x2
(
− 1

x

d

dx

)n(
sinx

x

)
.

• Spherical Bessel Function Orthogonality: Let znm be the m-th positive zero of jn.

If m 6= k then

∫ 1

0

x2jn(znmx)jn(znkx)dx = 0 and

∫ 1

0

x2(jn(znmx))2dx =
1

2
(jn+1(znm))2.

One-Dimensional Fourier Transform

F [u](ω) =
1

2π

∫ ∞
−∞

u(x)eiωxdx, F−1[U ](x) =

∫ ∞
−∞

U(ω)e−iωxdω

Table of Fourier Transform Pairs
Fourier Transform Pairs Fourier Transform Pairs

(α > 0) (β > 0)

u(x) = F−1[U ] U(ω) = F [u] u(x) = F−1[U ] U(ω) = F [u]

e−αx
2 1√

4πα
e−

ω2

4α

√
π

β
e−

x2

4β e−βω
2

e−α|x|
1

2π

2α

x2 + α2

2β

x2 + β2 e−β|ω|

u(x) =

{
0 |x| > α

1 |x| < α

1

π

sinαω

ω
2

sinβx

x
U(ω) =

{
0 |ω| > β

1 |ω| < β

δ(x− x0)
1

2π
eiωx0 e−iω0x δ(ω − ω0)

∂u

∂t

∂U

∂t

∂2u

∂t2
∂2U

∂t2

∂u

∂x
−iωU ∂2u

∂x2
(−iω)2U

xu −i∂U
∂ω

x2u (−i)2 ∂
2U

∂ω2

u(x− x0) eiωx0U
1

2π

∫ ∞
−∞

f(s)g(x− s)ds FG
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1. Beginning with the principle of conservation of energy and Fourier’s law of heat conduction, derive the PDE that
governs heat flow on a long thin rod assuming that density is a function of x but all other quantities (cross-sectional
area, thermal conductivity, specific heat) are constant.
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2. Solve the Laplace equation on the half disk 0 ≤ θ ≤ π, 0 ≤ r ≤ 1, subject to the boundary conditions ∂u
∂r (1, θ) = θ + 2

and u(r, 0) = u(r, π) = 0.
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3. (a) Write the function 1
2 − x as a Fourier sine series on the interval [0, 12 ].

(b) Carefully plot the sum of the Fourier series on the interval [−2, 2].

(c) Use your answer from (a) to compute the Fourier cosine series of x(1− x) on the interval [0, 12 ].
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4. Consider the displacement u of a string with source term Q = −α∂u∂t (where α is a small, positive constant), given by

∂2u

∂t2
=
∂2u

∂x2
− α∂u

∂t
.

(a) What is the physical effect of the source term Q on the string?

(b) Using separation of variables, solve the equation subject to the constraints

u(0, t) = 0, u(L, t) = 0, u(x, 0) = 0,
∂u

∂t
(x, 0) = f(x).

(c) In the case of part (b), what are the (circular) frequencies of vibration of the string?
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5. Express the eigenvalue problem

ex
2 d2φ

dx2
+ x

dφ

dx
= −λx2φ on [1, 2] with φ(1) = φ(2) = 0

in the standard Sturm-Liouville form. Explicitly verify that the Sturm-Liouville problem is regular, give the orthog-
onality relationship satisfied by the eigenfunctions, an asymptotic formula for the eigenvalues, and an approximate
expression for the eigenfunctions themselves.
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6. Write a series for the solution u of the modified heat equation

∂u

∂t
+ tu = k∇2u

on the unit ball in three dimensions (and all t ≥ 0) subject to homogeneous Dirichlet boundary conditions. You need
not relate the coefficients of the series to the initial data.
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7. Let u(x, t) be the solution of the initial/boundary value problem for the heat equation:

ut = uxx for 0 < x < 1, t > 0

u(x, 0) = 0,
∂u

∂x
(0, t) = 1, u(1, t) = 1.

(a) What is lim
t→∞

u(x, t) ?

(b) Find u(x, t).

(c) Use the equilibrium solution and one term from the Fourier series of u(x, t) to estimate how long from t = 0 it will
take for u( 1

2 , t) to attain half its equilibrium value (in other words, estimate the value of T such that

u
(
1
2 , t
)
<

1

2
lim
t→∞

u
(
1
2 , t
)

for t < T

and

u
(
1
2 , t
)
>

1

2
lim
t→∞

u
(
1
2 , t
)

for t > T.

(Bonus points for explaining why this is a really good estimate.)
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8. Consider the following wave equation on the interval [0, L]:

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x, 0) =
∂u

∂t
(x, 0) = 0,

∂u

∂x
(0, t) = 0, u(L, t) = sinαt

For what values of α is resonance possible? How does the situation change if the boundary condition at x = 0 is
changed to u(x, 0) = 0? Note that you do not need to write down the solution of this PDE to answer this question.
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9. Let

f(x) =

{
1 for 0 ≤ x ≤ 2
0 for |x− 1| > 1

.

(a) Compute the Fourier transform of f .

(b) Solve initial-value problem for the wave equation

utt =
1

9
uxx, u(x, 0) = f(x), ut(x, 0) = 0

with f(x) as given at the beginning of this problem.

(c) Draw a reasonably accurate graph of u(x, 3).
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10. Solve the initial-value problem

ut = 2uxx + ux , u(x, 0) = e−x
2

for u(x, t), t > 0 and −∞ < x <∞. Fully simplify your answer.
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