Final, Math 241, Fall 2009

Instructors - Block, Lieberman

You may use one sheet of 8 x 11" paper on which you write any information you like. No calculator.Good luck.

Show all work, even on multiple choice questions.

(1) Compute the principal value of the integral

$$\int_0^\infty \frac{\sin x}{x(x^2+1)} dx.$$

(a) 0
(b)
$$\frac{1}{2}(2 - e^{-1})$$

(c) $\frac{\pi}{2e}$
(d) $\frac{\pi}{2}(1 - e^{-1})$
(e) $\frac{\pi}{2}(2 - e^{-1})$

(2) Evaluate $\int_C \frac{\sin(2z)}{(6z-\pi)^3} dz$, where C is the ellipse given by $x^2 + 4y^2 = 4$

- (a) 0
- (b) 1/2
- (c) πi
- (d) $-\sqrt{3}$
- (e) $-2\pi i\sqrt{3}$

 $\mathbf{2}$

- (3) Evaluate the integral of $f(z) = z \cos(z^2)$ along the contour C that begins at 0, moves along the real axis to 1, moves counterclockwise around the circle of radius 1 until it reaches -1, then moves down along a vertical path to -1 - i. (Hint: there is a shortcut.)
 - (a) 0

(b)
$$\frac{i}{2}(e^{-2}-e^2)$$

(c)
$$\frac{1}{2}(1+i)(e^2 - e^{-2})$$

(d)
$$\frac{i}{4}(e^2 - e^{-2})$$

(c) $\frac{1}{2}(1+i)(e^2 - (d)) \frac{1}{4}(e^2 - e^{-2})$ (e) $\frac{1}{2}(e^2 - e^{-2})$

- (4) Compute a Laurent expansion of the function $f(z) = \frac{1}{(z-2i)(z+i)}$ valid on the annulus given by 1 < |z| < 2.
- 4

- (5) (a) Compute all possible values of $i^{\frac{\pi i}{2}}$.
 - (b) Compute all possible solutions of the equation $\cos(z) = 2$.

(6) Compute the eigenvalues and eigenfunctions of the Sturm Liouville problem

 $x^2y'' + xy' + 25\lambda y = 0$, subject to y'(1) = 0 and y(e) = 0.

6

 $\left(7\right)$ Evaluate the Cauchy-Principal value of the integral

$$\int_{-\infty}^{\infty} \frac{3x^2}{(x^2 + 2x + 2)(x^2 + 1)^2} dx$$

- (8) For each of the following functions determine all the singularities and classify them as removable, pole (and of what order) or essential. (a) $\frac{\cos(z)}{z^2}$

 - (b) $\frac{z}{\sin(z)}$
 - (c) $e^{1/z}/z$

8

(9) What is the radius of convergence of the Taylor series centered at 2 + i of the function $\frac{\cos(z)}{z(z-\pi)}$?

- (10) Suppose $u(r, \theta)$ satisfies Laplace's equations $\Delta u = 0$ on the unit disc $r \leq 1, \theta \in [0, 2\pi]$ with $u(1, \theta) = f(\theta)$. Calculate $u(r, \theta)$.
- 10