Final, Math 241, Fall 2009

Instructors - Block, Lieberman

You may use one sheet of 8×11 " paper on which you write any information you like. No calculator.Good luck.
Show all work, even on multiple choice questions.
(1) Compute the principal value of the integral

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x
$$

(a) 0
(b) $\frac{1}{2}\left(2-e^{-1}\right)$
(c) $\frac{\pi}{2 e}$
(d) $\frac{\pi}{2}\left(1-e^{-1}\right)$
(e) $\frac{\pi}{2}\left(2-e^{-1}\right)$
(2) Evaluate $\int_{C} \frac{\sin (2 z)}{(6 z-\pi)^{3}} d z$, where C is the ellipse given by

$$
x^{2}+4 y^{2}=4
$$

oriented counter-clockwise.
(a) 0
(b) $1 / 2$
(c) πi
(d) $-\sqrt{3}$
(e) $-2 \pi i \sqrt{3}$
(3) Evaluate the integral of $f(z)=z \cos \left(z^{2}\right)$ along the contour C that begins at 0 , moves along the real axis to 1 , moves counterclockwise around the circle of radius 1 until it reaches -1 , then moves down along a vertical path to $-1-i$. (Hint: there is a shortcut.)
(a) 0
(b) $\frac{i}{2}\left(e^{-2}-e^{2}\right)$
(c) $\frac{1}{2}(1+i)\left(e^{2}-e^{-2}\right)$
(d) $\frac{i}{4}\left(e^{2}-e^{-2}\right)$
(e) $\frac{1}{2}\left(e^{2}-e^{-2}\right)$
(4) Compute a Laurent expansion of the function $f(z)=\frac{1}{(z-2 i)(z+i)}$ valid on the annulus given by $1<|z|<2$.
(5) (a) Compute all possible values of $i^{\frac{\pi i}{2}}$.
(b) Compute all possible solutions of the equation $\cos (z)=2$.
(6) Compute the eigenvalues and eigenfunctions of the Sturm Liouville problem
$x^{2} y^{\prime \prime}+x y^{\prime}+25 \lambda y=0$, subject to $y^{\prime}(1)=0$ and $y(e)=0$.
(7) Evaluate the Cauchy-Principal value of the integral

$$
\int_{-\infty}^{\infty} \frac{3 x^{2}}{\left(x^{2}+2 x+2\right)\left(x^{2}+1\right)^{2}} d x
$$

(8) For each of the following functions determine all the singularities and classify them as removable, pole (and of what order) or essential.
(a) $\frac{\cos (z)}{z^{2}}$
(b) $\frac{z}{\sin (z)}$
(c) $e^{1 / z} / z$
(9) What is the radius of convergence of the Taylor series centered at $2+i$ of the function $\frac{\cos (z)}{z(z-\pi)}$?
(10) Suppose $u(r, \theta)$ satisfies Laplace's equations $\Delta u=0$ on the unit disc $r \leq 1, \theta \in[0,2 \pi]$ with $u(1, \theta)=f(\theta)$. Calculate $u(r, \theta)$.

