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Multiple Choice: Circle the correct answer choice.  These questions will be graded for partial 

credit so be careful to show all work legibly.  A correct answer with no work will receive little or 

no credit. 
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( ) 2 2

1

4.  The solution ( , ) to a certain wave equation is known to be given by

2 2 2
, cos sin sin .

n n
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u x t

n a n a n
u x t A t B t x

L L L

π π π∞
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( ),0  can be any of the following  foru x EXCEPT  

A)  ( ) ( ) ( )2 6,0 3sin sin
L L

u x x xπ π= +  

B) ( ) ( ) ( )2 4,0 2sin 5sin
L L

u x x xπ π= −  

C) ( ) ( ) ( )2 8,0 7sin 5sin
L L

u x x xπ π= +  

D) ( ) ( ) ( )2 7,0 4sin 6sin
L L

u x x xπ π= −  

E)  ( ) ( ) ( )4 8,0 3sin 5sin
L L

u x x xπ π= +  

F) ( ) ( ) ( )6 10,0 sin 3sin
L L

u x x xπ π= −  

G) ( ) ( ) ( ) ( )2 4 6,0 5sin 3sin 7sin
L L L

u x x x xπ π π= + −  

H) ( ) ( ) ( )4 8,0 4sin 3sin
L L

u x x xπ π= −  

 

 

5.  Consider the following statements: 

(I) The heat equation 
xx t

ku u=  on a rod of length L with boundary 

conditions ( ) ( )0, , 0u t u L t= =  only has the trivial solution 

( ), 0u x t = .  

 

(II) The wave equation 2

xx tt
a u u=  on a string of length L with 

boundary conditions ( ) ( )0, , 0u t u L t= =  only has the trivial 

solution ( ), 0u x t = . 

 

(III) The Laplace equation 0
xx yy

u u+ =  on a square of side length 

1 with boundary conditions  ( ) ( ) ( ) ( )0, 1, ,0 ,1 0u y u y u x u x= = = =  

only has the trivial solution ( ), 0u x y = . 

 

Out of these three statements, the following are true: 

A) I only 

B) I and II only 

C) II only 

D) I and III only 

E) III only 

F) II and III only 

G) I, II, and III 

H) none of these 
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Free Response: 

6.  Each of the following are real numbers.  Use only the principal value ( )Arg z  in each case.  

Find the real number for each. 
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8.  Find the Fourier series of ( ) 4sinf x x=  and justify your answer. 

(Hint: You might not have to integrate after all...) 
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9.  The Fourier-Legendre series of a function ( )f x defined on the interval ( )1,1−  is given by  
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The Legendre polynomials are given by ( ) ( )2 31 1
0 1 2 32 2

1, , 3 1 , 5 3 ,P P x P x P x x= = = − = − …  

For all n , if ( ) is odd, then  is an odd function
n

n P x and if  is even, n  

( )then  is an even function.
n

P x  

 

a)  Assume ( )f x  is an odd function on ( )1,1− .  Show that its Fourier-Legendre series is 

given by ( ) ( )2 1 2 1
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b)  The expression in part a) can be used to expand a function ( )f x  

defined only on ( )0,1 .  If ( ) 1f x =  on ( )0,1 , what are the first 

two non-zero coefficients in its Fourier-Legendre expansion? 

 

c)  The Fourier-Legendre expansion for ( ) 1f x = on ( )0,1  converges on all of  ( )1,1− .  

What function does it represent on ( )1,1− ? 

 

 

 

 

10.  a)  Compute the Fourier Integral of  

( )
if 1

0 if 1

x
e x

f x
x

 <
= 

>
 

 

b)  To what values does the Fourier integral of ( )f x  converge at -1 and 1? Justify your answer. 
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Answers: 
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