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1) True or False: (1 point each) Circle T for True and F for False.

1. The function f : C → C such that f(z) = sin(iz) is periodic.

T F

2. The partial differential equation uxx − 9uxy + 7ux + exu = 0 is a parabolic
differential equation.

T F

3. Let u(x, y) = Re(f(x + iy)) where f(z) is an analytic function. Then u is
harmonic.

T F

4. A function f(z) analytic in a set D may have a pole in D.

T F

5. All functions have a convergent Fourier series.

T F

6. The function f(z) = |z|2 is entire.

T F

7. The Taylor series of f(z) = ez

z−5
about z = 0 has radius of convergence 1.

T F

8. The Legendre equation admits polynomial solutions for any n > 0.

T F



2)Short Answer: (1 point each)

1. Let f(x) = x+9 on [−π, π]. What does the Fourier series of f converge to at 3.

Answer:

2. What is
∫

C
1
z
dz where C is |z| = 7 oriented counter clockwise?

Answer:

3. What are the solutions to z4 = −1?

Answer:

4. What type of singularity does f(z) = e
1

z−3 have at z = 3?

Answer:

5. What is the integral of f(z) = ez sin z around the curve |z| = 1 oriented counter
clockwise.

Answer:

6. If f(x) = 7 cos 2x then what is the sum of the Fourier coefficients of f?

Answer:

7. Determine the radius of convergence of the Taylor series of f = 1
(z−1)(z2+1)

centered at −1.

Answer:

8. How many different Laurent series does f = 1
(z−1)(z2+1)

have centered at z = −1.

(Here we consider a Taylor series a Laurent series too.)

Answer:



9. Let f(x) be the function defined, in [−1, 1] by

f(x) =

{

x − 1 −1 ≤ x < 0

aex + 1 0 ≤ x ≤ 1

Determine a knowing that the Fourier series of f(x) converges to −2 at x = 0.

Answer:



3) Compute the following contour integrals. All curves oriented counter clockwise.

1.
∫

C
z2

−4
z2+1

dz where C is |z − 2| = 3.99.

Answer:

2.
∫

C
ez

(z−2)2
dz where C is |z − 2| = 7.

Answer:

3.
∫

C
tan z

z
dz where C is |z − 5| = 5.001.

Answer:



4) Let f(z) = 1
(z−2)(z+3)

.

1. Determine the regions in which f(z) has a Laurent expansion about z = 1.

Answer:

2. Find the Laurent expansion of f(z) about z = 1 good in the region containing
the point 2.5.

Answer:



5) If f(x) = 3x − 4 for 0 ≤ x ≤ 3 then find the Fourier sine series of f.

Answer:



6) Compute

1.
∫ π

−π
1

2−cos x
dx

Answer:

2.
∫

∞

−∞

x2 cos(πx)
(x2+1)(x2+2)

dx

Answer:



7) Using the Laplace transform solve

y′′ − 5y′ + 4y = 0, y(0) = 0, y′(0) = 2

Answer:



8) 1. Show the real part of an analytic function is harmonic.

2.Find the harmonic conjugate xy − 1.

Answer:



9) Consider uxx − 2utt + 7ut + u = 0 subject to the boundary conditions u(0, t) = 0
and u(7, t) = 0. Find all solutions of the form u(x, t) = X(x)T (t).

Answer:



10) (5 points) Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem
y′′ + λy = 0 subject to the boundary conditions y′(0) = 0, y′(3) = 0.

Answer:



11) Consider the equation y′′ + 2y′ + y = 0.
1. Find the recurrence relation for the coefficients of a power series solution to this
equation.

Answer:


