Math240, Spring 2007

Answer Key

1. (i) false, (ii) true, (iii) false.
2. Solution is not unique, a possible solution is as follows. Since $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$, we obtain that $\operatorname{det}(A)=\operatorname{det}(-A)=(-1)^{3} \operatorname{det}(A)=$ $-\operatorname{det}(A)$. So, $\operatorname{det}(A)=0$, and therefore A is singular and its rank is smaller than 3.
3. Answer is not unique, a possible answer is

$$
P=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right), D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

4. (i) true, (ii) true, (iii) true.
5. $c_{2}=0$ and $c_{n+3}=\frac{2}{(n+3)(n+2)} c_{n}$ for $n \geq 0$; a possible choice of y 's is as follows: $y_{1}=1+\frac{1}{3} x^{3}+\frac{1}{45} x^{6}+\ldots$ and $y_{2}=x+\frac{1}{6} x^{4}+\frac{1}{126} x^{7}+\ldots$ (a more tricky choice is to take, for example, $y_{1}=1+x+\frac{1}{3} x^{3}+\ldots$ and $\left.y_{2}=1-x+\frac{1}{3} x^{3}+\ldots\right)$.
6. $y_{1}=10 e^{5 t}+6 e^{-t}, y_{2}=5 e^{5 t}-6 e^{-t}$.
7. $y=\left(11 e^{-3 t}+3 \sin (t)-\cos (t)\right) / 10$.
8. (g)
9. (f)
10. (g)
11. (c)
12. (c)
13. (b)
14. (h)
15. (e)
