Mathematics Department University *of* Pennsylvania Final Exam, Math 240: Calculus III

May 3, 2007

No calculators books and notes can be used, other than a two-sided handwritten A4 sheet of paper.

- Name:
- Penn Id (last 4 of the middle 8 digits):
- Instructor:
- \bigcirc Dr. Rimmer \bigcirc Dr. Temkin \bigcirc Dr. Katzarkov

The duration of the exam is 2 hours. There are seven free response questions which worth 10 points and eight multiple choice questions which worth 5 points. Thus, the total number of points is 110, and each grade above 100 will be cut to 100. Show your work in the space provided after each question and **circle your answer** in the multiple choice questions. No part credit is given in the multiple choice part of this exam, but you must show your work: blind guessing will not be credited. Part credit may be given for free response part, so be sure to show all details of your solution. Good luck!

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

total

1. (10 points) Let A and B be real $n \times n$ matrix. Decide whether each of the following statements is true or false, you do not need to justify your answer.

(i) (3 points) Always $A^T B^T = (AB)^T$.

(ii) (3 points) If A and B are invertible then always $B^{-1}A^{-1} = (AB)^{-1}$.

(iii) (4 points) If A is diagonalizable then it has n distinct eigenvalues.

(i)	a) true	b) false
(ii)	a) true	b) false
(iii)	a) true	b) false

2. (10 points) Show that if a real 3×3 matrix A satisfies $A^T = -A$, then its rank is smaller than 3.

3. (10 points) Given a matrix

$$A = \left(\begin{array}{rrr} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{array}\right)$$

find its diagonalization, i.e. find an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

4. (10 points) Decide whether each of the following statements is true or false, you do not need to justify your answer.

(i) (3 points) If y_1 and y_2 are two solutions of the differential equation $e^x y'' + \sin(x)y' + \cos(x)y = 0$, then $y_1 - y_2$ is also a solution.

(ii) (3 points) If line integrals $\int_C P dx + Q dy$ are independent of path in \mathbf{R}^2 , then P dx + Q dy is an exact differential, i.e. $P dx + Q dy = d\Phi$ for some function Φ on \mathbf{R}^2 .

(iii) (4 points) If X is an open ball in \mathbf{R}^3 , a vector field \mathbf{F} on X has continuous partial derivatives and $\operatorname{curl}(\mathbf{F}) = 0$, then \mathbf{F} is potential, i.e. $\mathbf{F} = \operatorname{grad}(\Phi)$ for some function $\Phi(x, y, z)$ on X.

(i)	a) true	b) false
(ii)	a) true	b) false
(iii)	a) true	b) false

5. (10 points) Solve the differential equation y'' - 2xy = 0 by a power series expansion about x = 0. You are done when you have written out the recurrence relation for the coefficients and the first three **non-zero** terms of two linearly independent solutions y_1 and y_2 .

coefficient recurrence:
y ₁ =
y ₂ =

6. (10 points) Find the solution of the system of linear first order differential equations $\mathbf{Y}' = A\mathbf{Y}$ that satisfies the initial condition $\mathbf{Y}(0) = \mathbf{a}_0$, where

$$A = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \mathbf{a}_0 = \begin{pmatrix} 16 \\ -1 \end{pmatrix}$$
$$y_1 = \underline{\qquad}$$

 $y_2 =$

7. (10 points) Use Laplace transform to solve the initial value $\mathbf{1}$ problem $y' + 3y = \sin t, \ y(0) = 1.$

a			
u - u			
9 -			

-

8. (5 points) Solve the system of linear equations

$$\begin{cases} 3x + y + z = -3\\ 2x + 3z = 2\\ -2x - 3y + z = 3 \end{cases}$$

Then x equals to

a) 1;	b) 0;	c) 3;	d) $-1;$
e) $-3;$	f) 4;	g) $-2;$	h) 2.

9. (5 points) Find $det(A^{-1}BA^T)$, where

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 5 & 4 & 0 \\ 6 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 8 & 0 & 4 \\ 7 & 6 & 5 \end{pmatrix}$$

a) 120; b) 144; c) 24; d) -120;
e) -144; f) 96; g) -24; h) -96.

10. (5 points) Let C be the arc of the parabola $x = t, y = 2 - t - t^2$ given by $-2 \le t \le 1$, and $\mathbf{F} = 2xe^{x^2-1}\cos(y)\mathbf{i} - e^{x^2-1}\sin(y)\mathbf{j}$ be a vector field. Evaluate the line integral

$$\int_{C} \mathbf{F} \cdot d\mathbf{r}$$

a) $\frac{e+e^{-1}}{2}$; b) $\frac{e^{2}+e^{-2}}{2}$; c) $e^{3}-e^{-1}$; d) $\frac{e-e^{-1}}{2}$;
e) 1; f) 0; g) $1-e^{3}$; h) $e^{3}-1$.

11. (5 points) Let C denote the circumference $(x-2)^2 + (y-2)^2 = 1$ traversed counterclockwise. Evaluate the line integral $\int dx \, dx$

$$\oint_C (x^6 + 3y)dx + (2x - e^{y^2})dy$$

a) 0; b) e^4 ; c) $-\pi$; d) -2π ;
e) 2π ; f) π ; g) $-e^4$; h) $\pi - e^4$.

12. (5 points) Let S be the portion of the cone $z = 1 - \sqrt{x^2 + y^2}$ lying above the xy-plane. We orient S by a unit upward normal **n**. Given a vector field $\mathbf{F} = y\mathbf{i} + \sin(z^2)\mathbf{j} + \cos(x^2)\mathbf{k}$, evaluate the surface integral

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} dS$$

a) $\sin(\pi^{2})$; b) π ; c) $-\pi$; d) -2π ;
e) $\cos(\pi^{2}) - \sin(\pi^{2})$; f) 2π ; g) $-\sin(\pi^{2})$; h) 0.

13. (5 points) Let S be the sphere $x^2 + y^2 + z^2 = 4$ oriented by the outward unit normal $\mathbf{n} = \frac{1}{2}(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$ and

$$\mathbf{F} = (xy+x)\mathbf{i} + (y-y^2)\mathbf{j} + (yz+z)\mathbf{k}$$

be a vector field. Evaluate the surface integral

a)
$$-32\pi$$
; b) 32π ; c) -8π ; d) 16π ;
e) $\frac{16\pi}{3}$; f) 8π ; g) -16π ; h) 0.

14. (5 points) Solve the initial value problem 2y'' + 2y' + y = x + 2, y(0) = 1, y'(0) = 0. Then $y(\pi)$ equals to

a) $\pi + 2;$	b) $\pi + e^{-\frac{\pi}{2}};$	c) $e^{-\pi};$	d) $\pi + \frac{e^{-\pi}}{2};$
e) $-e^{-\frac{\pi}{2}};$	f) $\pi - e^{-\pi};$	g) $2e^{-\pi};$	h) $\pi - e^{-\frac{\pi}{2}}$.

15. (5 points) A linear differential equation

$$3x^{2}y'' + (x - x^{2})y' + (x - 1)y = 0$$

has solutions $y_1 = x^{r_1}(1 + c_1x + c_2x^2 + ...)$ and $y_2 = x^{r_2}(1 + d_1x + d_2x^2 + ...)$ about x = 0. Find r_1 and r_2 . a) $r_1 = 0, r_2 = 1;$ b) $r_1 = -1, r_2 = 3;$ c) $r_1 = \frac{1 - \sqrt{13}}{6}, r_2 = \frac{1 + \sqrt{13}}{6};$ d) $r_1 = 0, r_2 = \frac{1}{3};$

e)
$$r_1 = -\frac{1}{3}, r_2 = 1;$$

g) $r_1 = \frac{1-\sqrt{13}}{2}, r_2 = \frac{1+\sqrt{13}}{2};$
h) $r_1 = \frac{3-\sqrt{21}}{2}, r_2 = \frac{3+\sqrt{21}}{2};$