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Instructions.

Please write your name and Penn ID in the space provided above, and fill in the oval identifying your section
and instructors. You will have two hours to complete this exam.

You are allowed to use one 8 1

2
× 11 sheet, both sides, for notes you wrote yourself. You are not allowed to

use calculators.

Do not detach this sheet from the body of the exam.

This is a multiple-choice test, but you must show your work. Blind guessing will not be credited.

Please mark your answer on both the front cover and on the problem itself. If you change an answer, be
absolutely clear which choice is your final answer.

All of the problems have exactly one correct answer.

All problems have equal weight. No partial credit will be given. No penalties for incorrect answers will be
taken.

Questions 1-11

1. A B C D E

2. A B C D E

3. A B C D E

4. A B C D E

5. A B C D E

6. A B C D E

7. A B C D E

8. A B C D E

9. A B C D E

10. A B C D E

11. A B C D E

Questions 12-22

12. A B C D E

13. A B C D E

14. A B C D E

15. A B C D E

16. A B C D E

17. A B C D E

18. A B C D E

19. A B C D E

20. A B C D E

21. A B C D E

22. A B C D E
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1. For the matrices A−1 and B−1 below, find (AB)−1.

A−1 =

(

1 2
3 2

)

B−1 =

(

2 1
3 1

)

A

(

8 12
12 5

)

B

(

8 3
12 5

)

C

(

5 6
6 8

)

D

(

5 8
8 6

)

E This can’t be done: one of A, B is singular, and AB is undefined.
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2. Find y(π), where y satisfies the differential equation

d4y

dx4
− 16y = 0 ,

subject to the initial condition

y(0) = 1, y′(0) = 0, y′′(0) = −4, y′′′(0) = 0 .

As a reminder, A4 − 16 = (A2 − 4)(A2 + 4) = (A − 2)(A + 2)(A2 + 4).

A 0 B 1 C 1

2
e2π + 3

2
D 1

2
e2π + 1

2
e−2π − 1

2
E 1

2
e2π − 1

2
e−2π + 3

2
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3. Give the general solution to the differential equation

x2y′′ − 2xy′ + 2y = 0 .

A y = c1x
2 + c2x

3 B y = c1 + c2x
−2 C y = c1x + c2x

3

D y = c1 + c2x
2 E y = c1x + c2x

2
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4. Which of the following diagrams is the direction field for the differential equation y′ = xy?

In the figures, the x-axis and the y-axis both run from −2 to 2.

A B C

D E



UNIVERSITY OF PENNSYLVANIA Math 240 Spring 2006 Final Exam CALCULUS III

5. Evaluate the inverse Laplace transform

L−1

{

4s + 23

s2 + 4s + 29

}

.

A 2e4t sin 5t + 3e4t cos 5t B 3e2t sin 5t − 2e2t cos 5t C 2e−2t sin 5t + 3e−2t cos 5t

D 3e−2t sin 5t + 4e−2t cos 5t E 2e2t sin 5t + 2e2t cos 5t
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6. The differential equation

y′ − 2y = e2t ,

with initial condition y(0) = 3, has its solution expressible using inverse Laplace transforms as:

A L−1

{

3

s − 2

}

+ L−1

{

1

(s − 2)2

}

B L−1

{

3

s − 2

}

+ L−1

{

1

(s − 1)

}

C L−1

{

2

s − 2

}

+ L−1

{

2

(s − 1)2

}

D L−1

{

2

s − 2

}

−L−1

{

1

(s − 2)2

}

E L−1

{

1

s − 2

}

−L−1

{

3

(s − 2)2

}
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7. If you solve the following system of differential equations

{

x′ = x + 3y

y′ = 5x + 3y

subject to the initial condition x(0) = 5 and y(0) = 3, then x(t) is given by:

A x = e2t + 4e5t B x = 3e−2t + 2e6t C x = 2e−2t + 3e6t

D x = 3e2t + 2e5t E x = 6e2t − e3t
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8. Find c4, where y =
∑∞

k=0
ckxk is a solution to the differential equation

y′′ − (1 + x2)y = 0 ,

subject to the initial condition y(0) = 8 and y′(0) = −3.

A 1 B 2 C 3 D 4 E 5
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9. Find a recurrence relation for cn, where y =
∑∞

k=0
ckxk is a solution to the differential equation

y′′ + xy′ + y = 0 .

That is, give a formula for cn+2 in terms of cn and/or cn+1.

A cn+2 = −cn + cn+1

n
B cn+2 =

(2n − 1)

(n + 1)(n + 2)
cn C cn+2 = − cn

n + 2

D cn+2 = −cn + cn+1

n(n + 1)
E cn+2 = − cn

2n(n − 1)
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10. Let S be the surface consisting of the boundary of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and

let F = (ex + z)i+(y2 −x)j−xeyk. Evaluate the outward flux (or divergence)

�
∫∫

S

F · dS =
�
∫∫

S

F · n dS ,

also written

�
∫∫

S

(ex + z) dy dz + (y2 − x) dz dx − xey dx dy .

A e − 2 B e C e + 2 D e + 3 E 4 − e
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11. Find
∫

C

(2x + ey) dx + (3y2 + xey) dy ,

where C is the arc of the ellipse x2 + 4(y − 2)2 = 4 from (0, 1) to (2, 2) in

the counterclockwise direction.

A e3 + 12 B 3e− 7 C 2e2 + 11 D 3e2 + 14 E e2 + 8
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12. Evaluate
∮

C

(ex + 3y) dx + (4x + y6) dy

where C is the circle (x − 2)2 + (y − 4)2 = 1, traversed counterclockwise.

A 0 B 1 C e D π E 4
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13. A certain forced undamped oscillator is modelled by the differential equation

m
d2x

dt2
+ 18x = 4 cos 3t .

What mass m > 0 corresponds to resonance, that is, x(t) is unbounded as t → ∞?

A m = 1 B m = 2 C m = 3 D m = 4 E m = 5
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14. Compute the determinant
∣

∣

∣

∣

∣

∣

0 −1 −3
2 3 3
−2 1 1

∣

∣

∣

∣

∣

∣

.

A −16 B −8 C 0 D 8 E 16
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15. Solve for x in the system

x − y − 3z = 0

x + 3y + 3z = 2

y + z = −2

As a hint:
∣

∣

∣

∣

∣

∣

1 −1 −3
1 3 3
0 1 1

∣

∣

∣

∣

∣

∣

= −2

You can also use the previous problem.

A −8 B −4 C no solution D 4 E 8
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16. Compute the sum of the elements in the last column of A−1 where

A =





1 0 1
−1 1 0
0 −1 1



 .

A −1 B −1

2
C

1

2
D 1 E A is actually singular, and A−1 is undefined.
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17. If
∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

= x ,

then
∣

∣

∣

∣

∣

∣

2c2 + a2 b2 −a2

2c1 + a1 b1 −a1

2c3 + a3 b3 −a3

∣

∣

∣

∣

∣

∣

= ?

A 0 B −x C 2x D −2x E 3x
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18. Select a matrix with eigenvalues 0 and 2, and corresponding eigenvectors

(

1
2

)

,

(

1
3

)

.

A

(

−4 2
−12 6

)

B

(

−2 1
−8 4

)

C

(

−4 −12
2 6

)

D

(

0 3
0 2

)

E

(

−4 −8
3 6

)
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19. The characteristic polynomial of A =





8 −2 2
−2 5 4
2 4 5



 is p(λ) = −λ(λ− 9)2.





1
2
−2



 is an eigenvector

for 0, and





−2
1
0



 is an eigenvector for 9. Select the vector below which is another eigenvector for 9, and is

also orthogonal to





−2
1
0



.

A





0
0
9



 B





2
4
3



 C





4
8
2



 D





3
6
−1



 E





2
4
5
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20. Let F = (x − y)i− 2xzj− x2k. Evaluate

∫∫

S

(∇× F) · n dS =

∫∫

S

(∇× F) · dS,

where S is the portion of the cone z = 1 −
√

x2 + y2 above the xy-plane

with outward directed normal (away from the origin).

Equivalently, evaluate
∫∫

S
P dy dz + Q dz dx + R dx dy where ∇× F = P i + Qj + Rk.

A 0 B π C 2π D 3π E 4π
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21. Evaluate the integral
∫∫

R

xy dA

over the region bounded by the curves xy = 1, xy = 5, y = x2 and

y = 4x2.

A 2 ln 2 B 4 ln 2 C 8 ln 2

D 12 ln 2 E 15 ln 2



UNIVERSITY OF PENNSYLVANIA Math 240 Spring 2006 Final Exam CALCULUS III

22. Find the surface area of the portion of the cone z = 1

2

√

x2 + y2 lying

above the circle (x − 1)2 + y2 = 1.

A
4

3
π B π ln 3 C

√
5

2
π

D 2π − 3 E π + 1


