Math 240 Final Exam

Name: Answer Key			
Instructor:			
TA's Name:			
Recitation Day	/Time:		

I pledge that I have abided by the guidelines of the Penn Honor Code on this exam.

(signature)

Directions:

- 1. Show all of your work on this test paper and **clearly indicate your answers**. In order to get full or partial credit, you must show work and **justify your answers**!
- 2. Calculator use is not permitted on this test. You may consult one handwritten 8 1/2" x 11" sheet of paper filled out on both sides.
- 3. Check that your test has 12 pages and 10 problems.
- 4. Each problem is worth 10 points, for a total of 100 points.
- 5. Make sure you sign the honor pledge.
- 6. Good luck!

For official use only. Do not write in the boxes below.

Problem	Score (out of)	Problem	Score (out of)
1	(10)	6	(10)
2	(10)	7	(10)
3	(10)	8	(10)
4	(10)	9	(10)
5	(10)	10	(10)

Total Score: _____(100)

- 1. Decide if the given statements are true or false, and justify your answers.
 - (i) $\mathbf{T} / \mathbf{F} : \mathbf{A} \ 3 \times 3$ matrix need not have any real eigenvalues.

False - since complex eigenvalues come in conjugate pairs, every 3 x 3 matrix must have 1 or 3 real eigenvalues.

(ii) **T** / **F** : The surface S parametrized by $x = s^3$, $y = s \cos t$, $z = s \sin t$, where $s \ge 0$ and $0 \le t \le 2\pi$, is smooth.

False - since $X_s = (3s^2, \cos t, \sin t)$ and $X_t = (0, -s \sin t, s \cos t)$, the normal vector $X_s \times X_t = (s, -3s^3 \cos t, -3s^3 \sin t)$ is zero when s = 0.

(iii) **T** / **F** : If an $n \times n$ matrix A is invertible, then it is diagonalizable.

False - e.g., the matrix {{1,0},{1,1}} is invertible but not diagonalizable.

(iv) **T** / **F**: Given vector functions $\vec{x}_1(t), \vec{x}_2(t), \ldots, \vec{x}_n(t)$, if the Wronskian $W[\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n](t)$ is zero at every point in an interval I, the functions are dependent on I.

False - this only holds if the vector functions form a set of solutions to a differential equation.

(v) **T** / **F** : Let $a_0(x)$, $a_1(x)$, and f(x) be continuous on an interval *I*. The initial value problem

$$y'' + a_0(x)y' + a_1(x)y = f(x)$$
$$y(0) = y_0, y'(0) = v_0$$

may have no solution on I.

False - the Existence and Uniqueness Theorem guarantees that the IVP has a unique solution on I.

2. Let R be the region in \mathbb{R}^3 enclosed by $z = x^2 + y^2$ and z = 9, and let S be the boundary of R oriented with outward normals. Compute the flux integral $\iint_S \vec{F} \cdot d\vec{S}$, where

$$\vec{F}(x,y,z) = \langle y-2, x^3 z, z^2 \rangle.$$

Answer: _____486pi (Divergence Theorem)

3. Carefully determine whether or not the set $\{3, x - 3, 5x + e^{-x}\}$ forms a basis for the space of solutions of the differential equation y''' + y'' = 0 on the interval [0, 1].

Answer (circle one): (Yes) No (Must check that the functions are all solutions and that they are linearly independent.)

4. Evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = \langle z^2, -3xy, x^3y^3 \rangle$ and S is the part of $z = 5 - x^2 - y^2$ above the plane z = 1, oriented upward.

Answer: _____0 (Stokes' Theorem)

5. For what values of k does the system

$$kx + y + z = 1$$
$$x + ky + z = 1$$
$$x + y + kz = 1$$

have (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions? Justify your answers.

Ans (i)	e.g., k=0	
(ii)	k = -2	
(iii)	k = 1	
()		

6. Determine the general (real-valued) solution to the system $\vec{x}' = A\vec{x}$, where

$$A = \left[\begin{array}{rr} 7 & 1 \\ -4 & 3 \end{array} \right].$$

Answer: _____y = c_1e^{5t}(-1,2) + c_2e^{5t}[t(-1,2) + (-1/2,0)]

7. Solve the following initial value problem:

Answer:
$$y'' + 7y' + 10y = e^{-2x}$$
$$y(0) = 0, y'(0) = 0$$
$$y = 1/9e^{-5x} - 1/9e^{-2x} + 1/3xe^{-2x}$$

8. Determine whether or not each of the following sets S is a subspace of the given real vector space V. For each set that is a subspace, write down a basis for the subspace.

(i) $V = M_3(\mathbb{R}), S = \{A \in V : rank(A) = 3\}.$

Not a subspace - e.g., does not contain the zero matrix.

(ii)
$$V = M_2(\mathbb{R}), S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in V : a + d = 0 \right\}.$$

Subspace with basis vectors $\{\{1,0\},\{0,-1\}\},\{\{0,1\},\{0,0\}\},\{\{0,0\},\{1,0\}\}$.

9. Determine the general (real-valued) solution to the system $\vec{x}' = A\vec{x}$, where

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3 & -1 \\ 0 & 2 & -1 \end{bmatrix}.$$

Answer: _____

 $y = c_1e^{3t}(1,0,0) + c_2e^{-2t}(0,-1/2(\cos t + \sin t),\cos t) + c_3e^{-2t}(0,-1/2\cos t - \sin t,-\sin t)$

10. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $L(\vec{e}_1) = \vec{e}_2$, $L(\vec{e}_2) = 2\vec{e}_1 + \vec{e}_2$, and $L(\vec{e}_1 + \vec{e}_2 + \vec{e}_3) = \vec{e}_3$. Find a nonzero vector \vec{v} such that $L(\vec{v}) = k\vec{v}$ for some real number k.

Answer: _______ e.g., (2,2,1)