Circle one: Professor Ziller

Professor Zywina
Name: \qquad
Penn Id\#: \qquad

Signature: \qquad
TA: \qquad

Recitation Day and Time: \qquad

You need to show your work, even for multiple choice problems. A correct answer with no work will get 0 points. The only exception are True/False problems, where no work needs to be shown. Each problem is worth 10 points.
You are NOT allowed to use a calculator. The extra double sided sheet of paper needs to be hand written in your own hand writing (no copies allowed).
(Do not fill these in; they are for grading purposes only.)

1) 9)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
1. For what values of a does the following system have infinitely many solutions?

$$
\begin{aligned}
x+y+z & =1 \\
2 x+a y+z & =0 \\
-x+y+z & =3
\end{aligned}
$$

Answer:
(a) 0
(b) 3
(c) 2
(d) 1
(e) 4
(f) -8
2. (a) Find the rank of the matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

(b) What is $\operatorname{det} A$?
(c) The set of solutions of the homogeneous system $A X=0$ depends on how many arbitrary parameters?

Name:
3. Let A be the matrix

$$
A=\left(\begin{array}{cc}
-5 & -4 \\
8 & k
\end{array}\right)
$$

For which value of k does there exist an invertible matrix P such that

$$
P A P^{-1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right)
$$

Answer:
(a) 2
(b) 7
(c) -4
(d) 8
(e) -2
(f) -8

Name:
4. Find the maximal number of linearly independent eigenvectors for the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 4 \\
0 & -1 & 4
\end{array}\right)
$$

Name:
5. Suppose that a pair of solutions $(x(t), y(t))$ to the system of differential equations

$$
\begin{aligned}
x^{\prime} & =-x+k y \\
y^{\prime} & =y
\end{aligned}
$$

satisfies $\lim _{t \rightarrow+\infty} \frac{x(t)}{y(t)}=1$ where k is some unknown constant. What is k ?
Answer:
(a) 2
(b) 4
(c) -4
(d) 8
(e) -2
(f) -8

Name:
6. Find the general solution to the system

$$
X^{\prime}=\left(\begin{array}{cc}
2 & -4 \\
0 & 2
\end{array}\right) X
$$

Name:
7. Let $y(t)$ be the solution of

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{t}
$$

which satisfies the initial conditions $y(0)=0$ and $y^{\prime}(0)=2$. Find $y(1)$.
Answer:
(a) e
(b) $1 / e$
(c) $3 e$
(d) $3 / e$
(e) e^{2}
(f) -8

Name:
8. Find the solution of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

subject to the initial conditions $y(0)=2$ and $y^{\prime}(0)=2$.
9. Find the solution $y(x)$ of

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$ for which $y(1)=2$ and $y^{\prime}(1)=4$.

10. Find the recurrence relationship for a power series solution of the differential equation

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

at $x=0$. Determine the first 4 non-zero terms of the series for the solution with $y(0)=$ $1, y^{\prime}(0)=2$.
11. Find the work done by the force field

$$
\mathbf{F}(x, y, z)=e^{y} \mathbf{i}+\left(x e^{y}+e^{z}\right) \mathbf{j}+y e^{z} \mathbf{k}
$$

in moving a particle from $(1,0,0)$ to $(0,1, \pi)$ along the helix $x=\cos (t), y=\sin (t), z=t$.
Answer:
(a) e^{π}
(b) $e^{\pi}-2$
(c) $e^{\pi}+1$
(d) $e^{\pi}-1$
(e) $2 e^{\pi}-1$
(f) $2 e^{\pi}-3$
12. Let C be the curve that is the intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=9$ oriented counter-clockwise as viewed from above. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where

$$
\mathbf{F}(x, y, z)=-y x^{2} \mathbf{i}+y^{2} z \mathbf{j}+z^{2} \mathbf{k}
$$

Answer:
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) -2
(e) $-\frac{1}{4}$
13. Let $\mathbf{F}(x, y)=\left\langle y^{2}, 3 x y\right\rangle$ be a vector field in the plane and let C be the closed curve shown in the following picture with a counter-clockwise orientation [the curve C_{1} and C_{3} travel along a circle of radius 2 and 1 , respectively]. Evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.

Answer:
(a) -10
(b) $\frac{14}{3}$
(c) $\frac{10}{3}$
(d) $-\frac{10}{5}$
(e) $\frac{3}{2}$
14. Find the outward flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathbf{d S}$ of the vector field $\mathbf{F}=3 x y^{2} \mathbf{i}+3 y z^{2} \mathbf{j}+3 z x^{2} \mathbf{k}$ where the surface S is the boundary of the region $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.
15. This is the only problem where no work needs to be shown. Each answer is worth one point. Which one of the following statements are true or false:
(a) If $\operatorname{det}(A-I)=0$, then 1 is an eigenvalue of $A . \quad$ Frue \bigcirc
(b) If $\operatorname{det} A=0$, then the system $A X=0$ has a unique solution.True \bigcirc False \bigcirc
(c) $(A B)^{T}=A^{T} B^{T}$ for all square matrices A, B.

True \bigcirc False \bigcirc
(d) If S is any closed surface, then $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=0$.

True \bigcirc False \bigcirc
(e) If $\mathbf{F}=\nabla f$ then $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all closed curves C.

True \bigcirc False \bigcirc

