Math 240, Final Exam
May 6, 2004

Name: \qquad
Instructor: Matt Szczesny
Teaching Assistant: \qquad
This exam consists of 15 pages. In order to receive full credit you need to show all your work .

Score		
1	5	
2	5	
3	5	
4	5	
5	5	
6	10	
7	5	
8	5	
9	5	
10	5	
11	5	
12	5	
13	5	
14	5	
Total	75	

1. Show that the differential equation $\left(2 x+y^{3}\right) d x+\left(3 x y^{2}-e^{-2 y}\right) d y=0$ is exact and find the particular solution with $y(-1)=0$.
2. Find the general solution to the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\sin (x)
$$

3. For what values of λ is every non-zero solution of the differential equation

$$
y^{\prime \prime}+\lambda y^{\prime}+y=0
$$

unbounded?
4. For what values of λ does the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & \lambda & 1 \\
2 & 1 & 2
\end{array}\right]
$$

have rank 3 ?
5. Determine whether the statement is true or false. If true, give a justification, if false, give a counterexample.
Let A be an $n \times n$ matrix with distinct positive eigenvalues. Then

1. $\operatorname{det}(\mathrm{A})>0$
2. A is diagonalizable
3. A is orthogonal
4. A is symmetric
5. Eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
6. Find a basis of eigenvectors for the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right]
$$

7. Let T be the following matrix

$$
T=\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]
$$

Use row operations to show that $\operatorname{det} T=(b-a)(c-a)(c-b)$.
8. While subject to force $\mathbf{F}(x, y)=y^{3} \mathbf{i}+\left(x^{3}+3 x y^{2}\right) \mathbf{j}$, a particle travels once around the circle of radius 3 . Use Green's Theorem to find the work done by F.
9. Evaluate

$$
\int_{C}\left(1-y e^{-x}\right) d x+e^{-x} d y
$$

where C is the curve $r(t)=\left(e^{\cos \pi t}, 1 /\left(t^{7}+1\right)\right), 0 \leq t \leq 1$.
10. Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where

$$
\mathbf{F}(x, y, z)=2 y \mathbf{i}+3 z \mathbf{j}+x \mathbf{k}
$$

and C is the triangle with vertices $(0,0,0),(0,2,0)$ and $(1,1,1)$ oriented so that the vertices are traversed in that order.
11. Let Q be the solid bounded by the cylinder $x^{2}+y^{2}=4$, the plane $x+z=6$ and the $x y$-plane. Find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where S is the surface of Q oriented by the outside normal, and $\mathbf{F}(x, y, z)=\left(x^{2}+\sin z\right) \mathbf{i}+(x y+\cos z) \mathbf{j}+e^{y} \mathbf{k}$.
12. Determine whether the set of solutions of the equation $3 x+2 y=5$ forms a subspace of \mathbb{R}^{2} under vector addition and scalar multiplication.
13. a) Give an example of a vector field \mathbf{F} on $\mathbb{R}^{2}-(0,0)$, where it has continuous partials, such that $\nabla \times \mathbf{F}=0$ and $\int_{C} \mathbf{F} \cdot d r$ is not independent of the path C joining a given set of points.
b) Now suppose that \mathbf{F} is defined on $\mathbb{R}^{3}-(0,0,0)$ where it has continuous partials, and $\nabla \times \mathbf{F}=0$. What can you say about the path-independence of the corresponding line integral ?
14. Find the simple closed curve C oriented counterclockwise on which the line integral

$$
\int_{C}\left(y^{3}-y\right) d y-2 x^{3} d x
$$

achieves its maximum value.

