SOME FORMULAS

Volume of a solid sphere of radius r: $\frac{4}{3}\pi r^3$ Surface area of a sphere of radius r: $4\pi r^2$ Volume of a cylinder: $\pi r^2 h$ Volume of a cone: $\frac{1}{3}\pi r^2 h$

FROM TRIGONOMETRY

 $sin^{2}\alpha = \frac{1}{2}(1 - cos2\alpha)$ $cos^{2}\alpha = \frac{1}{2}(1 + cos2\alpha)$

This exam contains 20 pages

Math 240, Final Exam

Name: _____

Instructor:

Score		
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
17	10	
18	10	
Total	180	

May 1, 2003

1. Indicate whether or not the following expressions are defined:

- 1. A + B, where A is a 5 × 5 matrix, B a 5 × 6 matrix.
- 2. The dot product of \mathbf{v} and \mathbf{w} , where $\mathbf{v} = [0, 1, 2]$ and $\mathbf{w} = [2, 5, 7]$.
- 3. The matrix product of \mathbf{v} and \mathbf{w} , where $\mathbf{v} = [0, 1, 2]$ and $\mathbf{w} = [2, 5, 7]$.
- 4. det(C), where C is a 2×3 matrix.
- 5. rank(C), where C is a 2×3 matrix.

2. True or false:

- 1. The set of vectors [a, b, c, d] with $a \ge 0$ form a vector space.
- 2. The set of vectors [a, b, c, d] with c = 0 form a vector space.
- 3. Ax = v always has a solution $x \neq 0$ if A is a 7×5 matrix, x is 5×1 vector and v a non -zero 7×1 vector.

3. First find the general solution of

$$y'' - y' - 6y = 0$$

Next compute the solution y of

$$y'' - y' - 6y = 12x$$
, $y(0) = \frac{1}{3}$, $y'(0) = 0$

Then y(1) is equal to

a)
$$\frac{2}{5}(e^3 - e^2) - \frac{5}{3}$$
 b) $\frac{2}{5}(e^3 - e^{-2}) - \frac{1}{3}$ c) $\frac{2}{5}(e^{-3} - e^2) - \frac{5}{3}$
d) $\frac{2}{5}(e^{-3} - e^{-2}) - \frac{1}{3}$ e) $\frac{2}{5}(e^3 - e^{-2}) - \frac{5}{3}$ f) $\frac{2}{5}(e^3 - e^2) - \frac{1}{3}$.

4. The value of t such that the matrix

$$\begin{bmatrix} 1 & t & 2 \\ 0 & 4 & t \\ 3 & -5 & 4 \end{bmatrix}$$

has no inverse is

$$a) -1 \quad b) \quad 0 \quad c) \quad 1 \quad d) \quad 2 \quad e) \quad 3$$

5. Suppose that $F = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$, M and N have continuous partial derivatives and C is a smooth closed curve enclosing a region D. Indicate whether each expression is defined and for those which are defined, label each statement as true or false:

a) If $\iint_D (N_x - M_y) = 0$, then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$

b) div (\mathbf{F}) is a vector.

c) If $\mathbf{F} = \nabla f$ and E is a curve starting at P_1 and ending at P_2 , then: $\int_E \mathbf{F} \cdot \mathbf{r} = \mathbf{F}(P_1) - \mathbf{F}(P_2)$

d) $curl(div(\mathbf{F})) = 0.$

6. The direction of the steepest ascent at P = (3,0) of the mountain $f(x,y) = 4 - \frac{2}{3}\sqrt{x^2 + y^2}$ is:

a)
$$\mathbf{i} + \mathbf{j}$$
 b) $-\frac{2}{3}\mathbf{i}$ c) $-\frac{2}{3}\mathbf{i} + \mathbf{j}$ d) 0 e) $-\frac{2}{3}\mathbf{j}$ f) $-\frac{2}{3}\mathbf{j}$

7. One eigenvalue of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is 1. Which of the following equations gives the corresponding eigenspace (i.e., the space that contains all eigenvectors for the eigenvalue 1)?

a)
$$x_2 = 0$$
 b) $x_1 + x_2 + x_3 = 0$ c) $-x_1 + x_2 = 0$
d) $x_1 + 2x_2 + x_3 = 0$ e) $x_1 + x_3 = 0$ f) $x_1 + 2x_2 = 0$

8. The value of the line integral $\int_C xy^2 dx + x^2 y dy$ over the curve *C* parametrized by $(1 + \cos^3(t))\mathbf{i} + (1 - \sin^6(t))\mathbf{j}, \quad 0 \le t \le \pi$, and oriented in the direction of increasing *t* is:

a) $\pi/2$ b) $-\pi$ c) 2 d) -2 e) 0 f) -1 g) $-\pi^2/4$

9. Let y(x) be the solution of the following initial value problem

$$y' + x^2 y = 3x^2, \quad y(0) = 1$$

Then y(1) is equal to

a) 0 b) 1 c)
$$e^{-1/3}$$
 d) $3 + 2e^{-1/3}$
e) $3 - 2e^{-1/3}$ f) $e - 1$ g) $e + 1$.

10. The following matrix is orthogonal

$$\begin{bmatrix} a & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ b & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ c & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$$

if [a, b, c] is

a)
$$\frac{1}{\sqrt{3}}[0,0,1],$$
 b) $\frac{1}{\sqrt{2}}[1,1,0],$ c) $[0,0,0]$ d) $[1,0,0]$
e) $[1,1,0]$ f) $[2,2,1]$ g) $\frac{1}{\sqrt{3}}[2,2,1].$

- 11. Suppose M(x, y) is a smooth function on the xy-plane and N is a constant. Under what conditions is Mdx + Ndy exact? Label each statement as true or false:
 - a) For any function M and any constant N.

b) If
$$\frac{\partial M}{\partial y} = 0$$
.

c) If
$$\frac{\partial M}{\partial x} = 0$$
.

- d) If there is some function u(x, y) such that $\frac{\partial u}{\partial x} = M$ and $\frac{\partial u}{\partial y} = N$.
- e) If there is some function u(x, y) such that $\frac{\partial u}{\partial x} = N$ and $\frac{\partial u}{\partial y} = M$.

12. Let $x^T = [x_1, x_2, x_3, x_4]$ be a solution of $Ax = [0, 0, 0, 0]^T$, where

Then $x_1 + x_2 + x_3 + x_4$ is equal to

a) 4 b) 3 c) 2 d) 1 e) 0 f)
$$-1$$
 g) -2

13. Find the solution $y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$ of the system of differential equations

$$y'_1 = 6y_1 + 9y_2$$

 $y'_2 = y_1 + 6y_2$
 $y_1(0) = 3, \quad y_2(0) =$

3

Then $y_1(1) + y_2(1)$ is equal to

a)
$$3e^9 + 2e^3$$
 b) $8e^9 - 2e^3$ c) $-4e^9 + 2e^3$
d) $8e^9 + 2e^3$ e) $4e^9 - 2e^3$ f) $4e^9 + 2e^3$

14. The surface integral $\iint_S G(r) \, dA$, where $G(r) = xy + x^2$ and S is the surface given by $x^2 + y^2 = 1$, $|z| \le 2$ is equal to

a) 0 b)
$$-8\pi$$
 c) -4π d) -2π
e) 2π f) 4π g) 8π .

15. Let P_1 and P_2 be two points in three-space, and C a curve joining P_1 to P_2 . For what values of a is the line integral $\int_C 3x^2y^5dx + ax^3y^4dy + dz$ independent of C?

a) 5 b) -5 c) 3 d) -3 e) 1 f) 0 g) novalues

16. The value of the line integral $\int_C (-y + \cos(x^2)) dx + (3x + e^{\sqrt{y^2-1}}) dy$ where C is the boundary of the rectangle with vertices at (1,0), (1,3), (5,0), (5,3) oriented counterclockwise is:

a) 12 b) 15 c) 24 d) 12π e) 48 f) -6π g) 0

- 17. The value of the surface integral $\iint_S F \cdot n \, dA$, where $F = \frac{x^3}{3}i + \frac{y^3}{3}j + z^2k$, and S is the closed cylindrical shell $x^2 + y^2 = 4, 0 \le z \le 3$ (including the top and bottom disks), oriented by the outwards normal is:
 - a) 0 b) 60π c) -60π d) 12π e) -12π f) 10 g) 36π

18. Let $F = \mathbf{i} + 3x\mathbf{j} + e^{\sin(2x)}\mathbf{k}$ be a vector field. The value of $\iint_S (\nabla \times F) \cdot ndA$ over the surface $z = x^2 + y^2 - 9, z \leq 0$, oriented by the normal pointing "upward" (i.e. in the positive z direction) is:

a) 3π b) 27π c) 6π d) 0π e) -9π f) 9π g) $e^{2\pi}$