SOME FORMULAS

Volume of a solid sphere of radius $\mathrm{r}: \frac{4}{3} \pi r^{3}$
Surface area of a sphere of radius r: $4 \pi r^{2}$
Volume of a cylinder: $\pi r^{2} h$
Volume of a cone: $\frac{1}{3} \pi r^{2} h$

FROM TRIGONOMETRY

$\sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha)$
$\cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha)$

This exam contains 20 pages

Math 240, Final Exam
May 1, 2003
Name: \qquad

Instructor: \qquad

Score		
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
17	10	
18	10	
Total	180	
10		
10		
10		
10		
10		

1. Indicate whether or not the following expressions are defined:
2. $A+B$, where A is a 5×5 matrix, B a 5×6 matrix.
3. The dot product of \mathbf{v} and \mathbf{w}, where $\mathbf{v}=[0,1,2]$ and $\mathbf{w}=[2,5,7]$.
4. The matrix product of \mathbf{v} and \mathbf{w}, where $\mathbf{v}=[0,1,2]$ and $\mathbf{w}=[2,5,7]$.
5. $\operatorname{det}(C)$, where C is a 2×3 matrix.
6. $\operatorname{rank}(C)$, where C is a 2×3 matrix.
7. True or false:
8. The set of vectors $[a, b, c, d]$ with $a \geq 0$ form a vector space.
9. The set of vectors $[a, b, c, d]$ with $c=0$ form a vector space.
10. $A x=v$ always has a solution $x \neq 0$ if A is a 7×5 matrix, x is 5×1 vector and v a non -zero 7×1 vector.
11. First find the general solution of

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

Next compute the solution y of

$$
y^{\prime \prime}-y^{\prime}-6 y=12 x, \quad y(0)=\frac{1}{3}, \quad y^{\prime}(0)=0
$$

Then $y(1)$ is equal to
a) $\frac{2}{5}\left(e^{3}-e^{2}\right)-\frac{5}{3}$
b) $\frac{2}{5}\left(e^{3}-e^{-2}\right)-\frac{1}{3}$
c) $\frac{2}{5}\left(e^{-3}-e^{2}\right)-\frac{5}{3}$
d) $\frac{2}{5}\left(e^{-3}-e^{-2}\right)-\frac{1}{3}$
e) $\frac{2}{5}\left(e^{3}-e^{-2}\right)-\frac{5}{3}$
f) $\frac{2}{5}\left(e^{3}-e^{2}\right)-\frac{1}{3}$.
4. The value of t such that the matrix

$$
\left[\begin{array}{ccc}
1 & t & 2 \\
0 & 4 & t \\
3 & -5 & 4
\end{array}\right]
$$

has no inverse is
a) -1
b) 0
c) 1
d) 2
e) 3
5. Suppose that $F=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}, M$ and N have continuous partial derivatives and C is a smooth closed curve enclosing a region D. Indicate whether each expression is defined and for those which are defined, label each statement as true or false:
a) If $\iint_{D}\left(N_{x}-M_{y}\right)=0$, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$
b) $\operatorname{div}(\mathbf{F})$ is a vector.
c) If $\mathbf{F}=\nabla f$ and E is a curve starting at P_{1} and ending at P_{2}, then: $\int_{E} \mathbf{F} \cdot \mathbf{r}=\mathbf{F}\left(P_{1}\right)-\mathbf{F}\left(P_{2}\right)$
d) $\operatorname{curl}(\operatorname{div}(\mathbf{F}))=0$.
6. The direction of the steepest ascent at $P=(3,0)$ of the mountain $f(x, y)=4-\frac{2}{3} \sqrt{x^{2}+y^{2}}$ is:
a) $\mathbf{i}+\mathbf{j}$
b) $-\frac{2}{3} \mathbf{i}$
c) $-\frac{2}{3} \mathbf{i}+\mathbf{j}$
d) 0
e) $-\frac{2}{3} \mathbf{j}$
f) $-\frac{2}{3} \mathbf{j}$
7. One eigenvalue of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ is 1 . Which of the following equations gives the corresponding eigenspace (i.e., the space that contains all eigenvectors for the eigenvalue 1)?
a) $x_{2}=0$
b) $x_{1}+x_{2}+x_{3}=0$
c) $-x_{1}+x_{2}=0$
d) $x_{1}+2 x_{2}+x_{3}=0$
e) $x_{1}+x_{3}=0$
f) $x_{1}+2 x_{2}=0$
8. The value of the line integral $\int_{C} x y^{2} d x+x^{2} y d y$ over the curve C parametrized by $\left(1+\cos ^{3}(t)\right) \mathbf{i}+\left(1-\sin ^{6}(t)\right) \mathbf{j}, \quad 0 \leq t \leq \pi$, and oriented in the direction of increasing t is:
a) $\pi / 2$
b) $-\pi$
c) 2
d) -2
e) 0
f) -1
g) $-\pi^{2} / 4$
9. Let $y(x)$ be the solution of the following initial value problem

$$
y^{\prime}+x^{2} y=3 x^{2}, \quad y(0)=1
$$

Then $y(1)$ is equal to
a) 0
b) 1
c) $e^{-1 / 3}$
d) $3+2 e^{-1 / 3}$
e) $3-2 e^{-1 / 3}$
f) $e-1$
g) $e+1$.
10. The following matrix is orthogonal

$$
\left[\begin{array}{lll}
a & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
b & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\
c & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}}
\end{array}\right]
$$

if $[a, b, c]$ is
a) $\frac{1}{\sqrt{3}}[0,0,1]$,
b) $\frac{1}{\sqrt{2}}[1,1,0]$,
c) $[0,0,0]$
d) $[1,0,0]$
e) $[1,1,0] \quad f) \quad[2,2,1]$
g) $\frac{1}{\sqrt{3}}[2,2,1]$.
11. Suppose $M(x, y)$ is a smooth function on the $x y$-plane and N is a constant. Under what conditions is $M d x+N d y$ exact? Label each statement as true or false:
a) For any function M and any constant N.
b) If $\frac{\partial M}{\partial y}=0$.
c) If $\frac{\partial M}{\partial x}=0$.
d) If there is some function $u(x, y)$ such that $\frac{\partial u}{\partial x}=M$ and $\frac{\partial u}{\partial y}=N$.
e) If there is some function $u(x, y)$ such that $\frac{\partial u}{\partial x}=N$ and $\frac{\partial u}{\partial y}=M$.
12. Let $x^{T}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be a solution of $A x=[0,0,0,0]^{T}$, where

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Then $x_{1}+x_{2}+x_{3}+x_{4}$ is equal to
a) 4
b) 3
c) 2
d) 1
e) $0 \quad f)-1$
g) -2
13. Find the solution $y(t)=\left[\begin{array}{l}y_{1}(t) \\ y_{2}(t)\end{array}\right]$ of the system of differential equations

$$
\begin{gathered}
y_{1}^{\prime}=6 y_{1}+9 y_{2} \\
y_{2}^{\prime}=y_{1}+6 y_{2} \\
y_{1}(0)=3, \quad y_{2}(0)=3
\end{gathered}
$$

Then $y_{1}(1)+y_{2}(1)$ is equal to
a) $3 e^{9}+2 e^{3}$
b) $8 e^{9}-2 e^{3}$
c) $-4 e^{9}+2 e^{3}$
d) $8 e^{9}+2 e^{3}$
e) $4 e^{9}-2 e^{3}$
f) $4 e^{9}+2 e^{3}$
14. The surface integral $\iint_{S} G(r) d A$, where $G(r)=x y+x^{2}$ and S is the surface given by $x^{2}+y^{2}=1,|z| \leq 2$ is equal to
a) 0
b) -8π
c) -4π
d) -2π
e) 2π f) 4π
g) 8π.
15. Let P_{1} and P_{2} be two points in three-space, and C a curve joining P_{1} to P_{2}. For what values of a is the line integral $\int_{C} 3 x^{2} y^{5} d x+a x^{3} y^{4} d y+d z$ independent of C ?
a) 5
b) -5
c) 3
d) -3
e) 1
f) 0
g) novalues
16. The value of the line integral $\int_{C}\left(-y+\cos \left(x^{2}\right)\right) d x+\left(3 x+e^{\sqrt{y^{2}-1}}\right) d y$ where C is the boundary of the rectangle with vertices at $(1,0),(1,3),(5,0),(5,3)$ oriented counterclockwise is:
a) 12
b) 15
c) 24
d) 12π
e) 48
f) -6π
g) 0
17. The value of the surface integral $\iint_{S} F \cdot n d A$, where $F=\frac{x^{3}}{3} i+\frac{y^{3}}{3} j+z^{2} k$, and S is the closed cylindrical shell $x^{2}+y^{2}=4,0 \leq z \leq 3$ (including the top and bottom disks), oriented by the outwards normal is:
a) 0
b) 60π
c) -60π
d) 12π
e) -12π
f) 10
g) 36π
18. Let $F=\mathbf{i}+3 x \mathbf{j}+e^{\sin (2 x)} \mathbf{k}$ be a vector field. The value of $\iint_{S}(\nabla \times F) \cdot n d A$ over the surface $z=x^{2}+y^{2}-9, z \leq 0$, oriented by the normal pointing "upward" (i.e. in the positive z direction) is:
a) 3π
b) 27π
c) 6π
d) 0π
e) -9π
f) 9π
g) $e^{2 \pi}$

