| Problem: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Score:

## Total:

# Please do not write above this line <br> UNIVERSITY OF PENNSYLVANIA <br> DEPARTMENT OF MATHEMATICS <br> MATH 240 FINAL EXAM <br> Monday December 21, 2009 

Your name (printed) $\qquad$

Signature $\qquad$
Professor (circle one): Patrick Clarke Chenxu He Herman Gluck

TA $\qquad$ Recitation Day $\qquad$ Recitation hour $\qquad$
INSTRUCTIONS. There are 12 problems on this exam; problem 4 is worth 12 points, and all the rest are worth 8 points each.

For the 8 point problems, to get full credit you must get the right answer and your written supporting work must be understandable by us (the graders) and be sufficient in our opinion to fully derive your answer. Even if you can do the problem in your head, you must show all the work. For these problems, half credit is available if your work shows, in our opinion, substantial progress towards the solution.

For the 12 point problem, partial credit is available.
Note. A problem with a correct answer may receive full, partial or no credit.
You must put all answers in the spaces provided.
No books, notes, calculators or computers during the exam...except that you may use one $81 / 2$ by 11 inch sheet of paper with information written or typed on both sides.

This exam is conducted under Penn's Code of Academic Integrity.
Please write dark and large, and print your name on each sheet, in the space provided at the top.

Good luck!

Math 240 Final Exam, Dec 21, 2009 Your name $\qquad$
Problem 1. Solve the system of equations

$$
\begin{aligned}
& x+y+2 z=7 \\
& x+2 y+3 z=9 \\
& x+2 y+4 z=10
\end{aligned}
$$

Answer. $\mathrm{x}=$ $\qquad$ , $\mathrm{y}=$ $\qquad$ , $\mathrm{Z}=$ $\qquad$

Math 240 Final Exam, Dec 21, 2009
Your name
Problem 2. Calculate the trace of $\mathrm{A}^{-1}$, where $\mathrm{A}=$

| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 1 | 3 |
| 0 | 2 | 1. |

Answer. Trace of $\mathrm{A}^{-1}=$

Math 240 Final Exam, Dec 21, 2009
Problem 3. Find a $2 \times 2$ matrix A with eigenvalues 1 and 2 and corresponding eigenvectors $(3,1)$ and $(2,1)$.

Answer. $\mathrm{A}=$

Math 240 Final Exam, Dec 21, 2009 Your name $\qquad$
Problem 4. Diagonalize the matrix $\mathrm{A}=$

$$
\begin{array}{cc}
4 & -3 \\
1 & 0
\end{array}
$$

That is, find matrices P and D such that $\mathrm{A}=\mathrm{PD} \mathrm{P}{ }^{-1}$, where D is diagonal.

You must put the following answers in the designated spaces:
(1) Eigenvalues of A in increasing order: $\qquad$ and $\qquad$
(2) Eigenvectors of A in corresponding order: $\qquad$ and $\qquad$
(3) Diagonal matrix $\mathrm{D}=$
(4) Matrix $P=$

Math 240 Final Exam, Dec 21, 2009
Your name

## Extra page for Problem 4.

Math 240 Final Exam, Dec 21, 2009
Problem 5. Find the general solution of the differential equation

$$
d^{4} y / d x^{4}+4 d^{3} y / d x^{3}+4 d^{2} y / d x^{2}=0
$$

Answer. $\mathrm{y}(\mathrm{x})=$

Problem 6. Find the function $y(x)$ which satisfies the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=0
$$

and the initial conditions $y(2)=32$ and $y^{\prime}(2)=0$.

Answer. $\mathrm{y}(\mathrm{x})=$

Problem 7. The differential equation

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}+y=0
$$

has solutions in the form of power series

$$
\mathrm{y}=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2} \mathrm{x}^{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\ldots .
$$

Find the recursion formula for the coefficients.

Answer. Recursion formula is

Math 240 Final Exam, Dec 21, 2009 Your name $\qquad$
Problem 8. The differential equation

$$
3 x y^{\prime \prime}+y^{\prime}-y=0
$$

has solutions of the form

$$
\mathrm{y}=\mathrm{x}^{\mathrm{r}}\left(\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2} \mathrm{x}^{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\ldots\right) .
$$

Find the two possible values of $r$.

Answer. r = $\qquad$ and

Math 240 Final Exam, Dec 21, 2009 Your name
Problem 9. Consider the vector field

$$
V=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) /\left(x^{2}+y^{2}+z^{2}\right) .
$$

Compute the outward flux of V through the boundary of the region R between the spheres of radius $a$ and $b(a<b)$ centered at the origin.

Answer. Outward flux of $\mathrm{V}=$

Problem 10. Consider the vector field

$$
V=(\cos z+y \cos x) \mathbf{i}+(\sin x) \mathbf{j}+w(x, y, z) \mathbf{k}
$$

and suppose that the line integral of V along any path in 3 -space depends only on the endpoints of the path.

Find all functions $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ which make this possible.

Answer. $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ $\qquad$

Problem 11. Let $C$ be the ellipse in the $x y$-plane given by the equation

$$
x^{2} / 4+y^{2} / 16=1
$$

oriented counterclockwise. Find the value of the integral $\int_{C} y d x-x d y$.

Answer. $\int_{\mathrm{C}} \mathrm{ydx}-\mathrm{xdy}=$ $\qquad$

Math 240 Final Exam, Dec 21, 2009 $\qquad$
Problem 12. Let

$$
\mathrm{V}=\mathrm{y} \mathbf{i}+\mathrm{yz}^{3} \mathbf{j}+\mathrm{xyz} \mathbf{k} .
$$

Compute the outward flux of the curl of V through the portion of the surface

$$
4-z=x^{2}+y^{2}
$$

which lies above the xy-plane.
Answer. Outward flux of the curl of $\mathrm{V}=$

