Math 240 Fall 2002 Final Exam

1. Solve the initial value problem

$$
2 x y d y+\left(y^{2}-6 x^{2}\right) d x=0, \quad y(-2)=0 .
$$

2. Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+8 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

3. Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{t} .
$$

4. Find an equation of the plane through the origin parallel to the line $x=1-t, y=3 t, z=2+t$ and orthogonal to the plane $x+y+z=5$.
5. Let V be the vector space of all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ in \mathbf{R}^{5} such that

$$
\begin{array}{r}
x_{1}+x_{3}=0 \\
x_{1}-x_{2}+2 x_{3}-x_{4}=0 .
\end{array}
$$

What is the dimension of V ?
6. Let A be the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 2 & 2
\end{array}\right) .
$$

Find the inverse of the matrix A.
7. A certain 4×4 matrix A has eigenvalues 0,1 , and 2 . Suppose also that

$$
A\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right], \quad \text { and } \quad A\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right] .
$$

(a) Determine whether there exist a diagonal matrix D and an invertible matrix P such that $A=P^{-1} D P$.
(b) If your answer to (a) is positive, find the sum of all entries of D. Hint: this does not require finding D or P.
8. Solve the initial value problem

$$
x y^{\prime}=y \ln x, \quad y(e)=e .
$$

9. Find the solution to the system

$$
X^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) X
$$

that also satisfies

$$
X(0)=\binom{1}{1}
$$

10. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=z^{2} \mathbf{i}+(\sin y) \mathbf{j}+2 x z \mathbf{k}$, and C is the curve with endpoints $A=(0,0,0)$ and $B=(1,1,1)$ which is obtained by intersecting the surfaces $x^{2}-2 y^{2}+z^{2}=$ 0 and $(x-1)^{2}+y^{2}=1$, and oriented from A to B.

11. Let $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$. Find the derivative of the scalar function $\operatorname{div} \mathbf{F}$ at the point $P=(1,2,3)$ in the direction of the vector $(1,1,-1)$.
12. Let S be the part of the cone $x^{2}+y^{2}=z^{2}$ between $z=0$ and $z=2$ planes. Evaluate $\int_{S} z d A$.

13. Does there exist an orthogonal matrix A such that

$$
A\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] ?
$$

Justify your answer.
14. Determine whether it is true that for every solution $X(t)$ to the system

$$
X^{\prime}=\left(\begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array}\right) X
$$

we have

$$
\lim _{t \rightarrow+\infty} X(t)=\binom{0}{0} .
$$

15. Find the volume of the parallelepiped with sides given by the vectors $(1,-1,2),(2,1,3)$, and $(-1,-4,1)$.
16. Let $\mathbf{F}=\left(y^{2}+z^{2}\right) \mathbf{i}+\left(z^{2}+x^{2}\right) \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$. Find the circulation $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the boundary of the triangle cut from the plane $x+y+z=1$ by the first octant, counterclockwise as viewed from above.

17. Evaluate $\oint_{C}(3 y d x+2 x d y)$, ${ }_{\text {w }}$ where C is the boundary of the region $0 \leq x \leq \pi, 0 \leq y \leq \sin x$, traversed counterclockwise.
18. Find the outward flux of the vector field $\mathbf{F}=y \mathbf{i}+x y \mathbf{j}-z \mathbf{k}$ through the boundary of the region inside the solid cylinder $x^{2}+y^{2} \leq 4$ between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$.

