

MATH 240 FINAL EXAM Spring 2012

1. Solve the equations for x.

$$\begin{aligned} 2x &+ 3y &+ 2z &= 1\\ x &+ 0y &+ 3z &= 2\\ 2x &+ 2y &+ 3z &= 3 \end{aligned}$$

Hint:
If $A = \begin{bmatrix} 2 & 3 & 2\\ 1 & 0 & 3\\ 2 & 2 & 3 \end{bmatrix}$ then $A^{-1} = \begin{bmatrix} -6 & -5 & 9\\ 3 & 2 & -4\\ 2 & 2 & -3 \end{bmatrix}$.
a) $x = -1$ b) $x = 0$ c) $x = 2$ d) $x = 5$ e) $x = 7$ f) $x = 11$ g) none of the above

1

 9_{m} \downarrow 2_{m} \downarrow 9_{m}

Answer: (f). To find the solution vector, we need only apply the inverse:

$\begin{bmatrix} x \end{bmatrix}$		-6	-5	9	1		11]
y	=	3	2	-4	2	=	-5	.
		2	2	-3	3		-3	

This answer can easily be verified by substituting back into the original system.

2. The lemniscate of Gerono is parametrized by the formulas

$$\begin{aligned} x(t) &= \cos t, \\ y(t) &= \sin t \cos t. \end{aligned}$$

Compute the area of the right-hand lobe (corresponding to the range of parameters $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$). Hint: Use Green's Theorem and the differential -y dx. Near the end you'll likely need to use a *u*-substitution.

a)
$$\frac{1}{6}$$
 b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$ e) $\frac{5}{6}$ f) 1 g) none of the above

Answer: (d). For this specific differential, we have P = -y and Q = 0, so $Q_x - P_y = 1$. Thus by Green's Theorem we have

$$\iint_A 1\frac{d}{A} = \int_{\partial A} -ydx,$$

that is, the area of A is equal to the line integral of -ydx along the boundary of A. Writing the line integral using the given parametrization, we have

$$\int_{\partial A} -y dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} -\sin t \cos t (-\sin t) dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 t \cos t dt.$$

Substituting $u = \sin t$ gives

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 t \cos t dt = \int_{-1}^{1} u^2 du = \frac{2}{3}.$$

- 3. Calculate the outward flux of \vec{F} across S if $\vec{F}(x, y, z) = 3xy^2\vec{i} + xe^z\vec{j} + z^3\vec{k}$ and S is the surface of the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = -1 and x = 2.
 - a) 0 b) $-\frac{\pi}{4}$ c) $\frac{11\pi}{8}$ d) 3π e) $\frac{9\pi}{5}$ f) $\frac{9\pi}{2}$ g) none of the above

Answer: (f). We use the divergence theorem. First we compute the divergence of \vec{F} :

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} (3xy^2) + \frac{\partial}{\partial y} (xe^z) + \frac{\partial}{\partial z} (z^3) = 3(y^2 + z^2).$$

If C is the interior of the cylinder that is described in the problem and ∂C is the surface bounding it, then

$$\iint_{\partial C} \vec{F} \cdot \vec{n} dS = \iiint_C 3(y^2 + z^2) dV.$$

We can evaluate the integral in cylindrical coordinates (r, θ, x) , where (r, θ) represent the polar coordinates in the yz-plane.

$$\iint_{\partial C} \vec{F} \cdot \vec{n} dS = \iiint_C 3(y^2 + z^2) dV = \int_{-1}^2 \int_0^{2\pi} \int_0^1 3r^2 r dr d\theta dx = \frac{9\pi}{2}$$

4. Compute the outward flux of $\nabla \times \vec{F}$ through the surface of the ellipsoid $2x^2 + 2y^2 + z^2 = 8$ lying above the plane z = 0, where

$$\vec{F} = (3x - y)\vec{i} + (x + 3y)\vec{j} + (1 + x^2 + y^2 + z^2)\vec{k}.$$

a) 0 b) 2π c) 3π d) 8π e) 12π f) 16π g) none of the above

Answer: (d). We use Stokes' theorem. If S is the top half of the ellipsoid, then its boundary will be a curve C obtained by setting z = 0. On the circle, $2x^2 + 2y^2 = 8$, meaning that C is the circle of radius 2 centered at the origin and lying in the xy-plane. Since the outward flux points upwards in the z-direction, the correct orientation of C is counterclockwise. We conclude

$$\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} dS = \oint_{C} (3x - y)dx + (x + 3y)dy + (1 + x^{2} + y^{2} + z^{2})dz.$$

We can parametrize C by $\vec{r}(t) = \langle 2\cos t, 2\sin t, 0 \rangle$ for $t \in [0, 2\pi]$. We will get

$$\begin{split} \oint_C (3x-y)dx + (x+3y)dy + (1+x^2+y^2+z^2)dz \\ &= \int_0^{2\pi} \left[(6\cos t - 2\sin t)(-2\sin t) + (2\cos t + 6\sin t)(2\cos(t)) + (1+4\cos^2 t + 4\sin^2 t)(0) \right] dt. \\ &= \int_0^{2\pi} 4 \left[\sin^2 t + \cos^2 t \right] dt = 8\pi. \end{split}$$

5. Find a 2×2 real matrix A that has

an eigenvalue $\lambda_1 = 1$ with eigenvector $\vec{E}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and an eigenvalue $\lambda_2 = -1$ with eigenvector $\vec{E}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Then compute the determinant of $A^{10} + A$ and write your answer in the box below.

a)
$$A = \begin{bmatrix} -\frac{5}{3} & \frac{4}{3} \\ -\frac{4}{3} & \frac{5}{3} \end{bmatrix}$$
 b) $A = \begin{bmatrix} -\frac{4}{3} & \frac{5}{3} \\ -\frac{3}{3} & \frac{4}{3} \end{bmatrix}$ c) $A = \begin{bmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{4}{3} & \frac{5}{3} \end{bmatrix}$ d) $A = \begin{bmatrix} \frac{4}{3} & \frac{5}{3} \\ \frac{3}{3} & \frac{4}{3} \end{bmatrix}$
e) $A = \begin{bmatrix} \frac{5}{3} & -\frac{4}{3} \\ \frac{4}{3} & -\frac{5}{3} \end{bmatrix}$ f) $A = \begin{bmatrix} \frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & -\frac{4}{3} \end{bmatrix}$ g) none of the above
 $\det(A^{10} + A) = \begin{bmatrix} -\frac{4}{3} & -\frac{5}{3} \\ \frac{4}{3} & -\frac{5}{3} \end{bmatrix}$

Answer: (a). If such a matrix A exists, it should be diagonalizable, meaning $D = P^{-1}AP$ when

$$D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ when } P = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

We can find A by the formula $A = PDP^{-1}$. We have

$$P^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}, \qquad DP^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} \end{bmatrix}, \qquad PDP^{-1} = \begin{bmatrix} -\frac{5}{3} & \frac{4}{3} \\ -\frac{4}{3} & \frac{5}{3} \end{bmatrix}$$

We can compute A^{10} using the diagonalization: $A^{10} = PD^{10}P^{-1}$. The tenth power of D is the identity matrix, so $A^{10} = PIP^{-1} = PP^{-1} = I$. We conclude

$$\det(A^{10} + A) = \det(A + I) = \det \begin{bmatrix} -\frac{2}{3} & \frac{4}{3} \\ -\frac{4}{3} & \frac{8}{3} \end{bmatrix} = 0$$

Alternately, $det(A^{10} + A) = det(D^{10} + D) = 0$ since D + I has a row which is identically zero.

6. Identify all possible eigenvalues of an $n \times n$ matrix A if A which satisfies the following matrix equation:

$$A - 2I = -A^2.$$

Must A be invertible? Record your answer in the box below and provide justification for your answer.

a) $\lambda = 0, 1$ b) $\lambda = 0, 2$ c) $\lambda = 0, 1, -2$ d) $\lambda = 1, -2$ e) $\lambda = 0, 1, -3$ f) $\lambda = 1, -3$ g) none of the above

Answer: (d). Suppose \vec{E} is an eigenvector of A with eigenvalue λ (recall that every eigenvalue has at least one eigenvector). We know that $A\vec{E} = \lambda \vec{E}$, so $(A - 2I)\vec{E} = (\lambda - 2)\vec{E}$. Likewise, $-A^2\vec{E} = -A(\lambda\vec{E}) = -\lambda^2\vec{E}$. We conclude that $(\lambda - 2)\vec{E} = -\lambda^2\vec{E}$ when the relationship $A - 2I = -A^2$ holds. Since \vec{E} is never zero, we have $\lambda - 2 = -\lambda^2$. Solving for λ gives $\lambda = 1, -2$. These are the only possible eigenvalues—we haven't shown that they *must* be eigenvalues (take A = I, for example; it satisfies the equation but has not eigenvalue equal to -2), but that no other possible eigenvalues could occur. In particular, A must be invertible because 0 cannot be an eigenvalue. Alternately, notice that our formula implies that

$$I = \frac{1}{2}(A + A^2) = A\left(\frac{1}{2}I + \frac{1}{2}A\right).$$

Not only must A be invertible, but its inverse equals $\frac{1}{2}I + \frac{1}{2}A$.

7. Solve the differential equation

$$9x^2y'' + 2y = 0$$

on the interval $(0, \infty)$ subject to the initial conditions y(1) = 1 and $y'(1) = \frac{4}{3}$.

a)
$$y = 2x^{\frac{2}{3}} - 3x^{\frac{1}{3}}$$

b) $y = 3x^{\frac{2}{3}} - 2x^{\frac{1}{3}}$
c) $y = 3x^{\frac{3}{2}} - 3x^{3}$
d) $y = 3x^{\frac{3}{2}} - 2x^{3}$
e) $y = 2x^{2} - 3x$
f) $y = 3x^{2} - 2x$
g) none of the above

Answer: (b). This is a Cauchy-Euler equation. The auxiliary equation is 9m(m-1) + 2 = 0, which factors as (3m-2)(3m-1) = 0. Thus the general solution will have the form $y = c_1 x^{\frac{2}{3}} + c_2 x^{\frac{1}{3}}$. Solving the system of equations

$$c_1 + c_2 = 1$$
$$\frac{2}{3}c_2 + \frac{1}{3}c_2 = \frac{4}{3}$$

gives $c_1 = 3$ and $c_2 = -2$.

8. Let $\vec{\omega} := \langle 1, 2, 3 \rangle$, and let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$. Now consider the differential equation

$$\frac{d}{dt}\vec{r} = \vec{\omega} \times \vec{r}.$$

Select the answer which correctly expresses this system of equations in matrix notation when

$$\vec{X}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}.$$

_

_

Do not solve the system.

a)
$$\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -1 & 3\\ 1 & 0 & -2\\ -3 & 2 & 0 \end{bmatrix} \vec{X}$$
 b) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -2 & 1\\ 2 & 0 & -3\\ -1 & 3 & 0 \end{bmatrix} \vec{X}$ c) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -3 & 2\\ 3 & 0 & -1\\ -2 & 1 & 0 \end{bmatrix} \vec{X}$
d) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -1 & 2\\ 1 & 0 & -3\\ -2 & 3 & 0 \end{bmatrix} \vec{X}$ e) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -3 & 1\\ 3 & 0 & -2\\ -1 & 2 & 0 \end{bmatrix} \vec{X}$ f) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -2 & 3\\ 2 & 0 & -1\\ -3 & 1 & 0 \end{bmatrix} \vec{X}$
g) none of the above

Answer: (c). First we simply expand the formula for the cross product:

$$\langle 1, 2, 3 \rangle \times \langle x, y, z \rangle = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ x & y & z \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ y & z \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 3 \\ x & z \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 2 \\ x & y \end{vmatrix} \vec{k}$$
$$= (2x - 3y)\vec{i} + (3x - z)\vec{j} + (y - 2x)\vec{k}.$$

We write this vector as a column vector and discover that

$$\begin{bmatrix} 2x - 3y \\ 3x - z \\ y - 2x \end{bmatrix} \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$
$$\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \vec{X}.$$

9. Select the answer below which corresponds to the first few terms in a power series solution of the differential equation

$$x^2y'' + (x^2 - x)y' + y = 0.$$

Will there be a second, linearly independent series solution for this equation? Explain your answer.

a)
$$y = x^{\frac{1}{2}} + \frac{1}{2}x^{\frac{3}{2}} + \frac{1}{6}x^{\frac{5}{2}} + \frac{1}{12}x^{\frac{7}{2}} + \cdots$$
 b) $y = -x^{\frac{1}{2}} + \frac{1}{6}x^{\frac{3}{2}} - \frac{1}{12}x^{\frac{5}{2}} + \frac{1}{20}x^{\frac{7}{2}} + \cdots$ c) $y = x^{\frac{1}{2}} + x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{5}{2}} - \frac{1}{9}x^{\frac{7}{2}} + \cdots$
d) $y = x - x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \cdots$ e) $y = x - x^2 + \frac{1}{2}x^3 - \frac{1}{6}x^4 + \cdots$ f) $y = x + x^2 + \frac{1}{2}x^3 + \frac{1}{9}x^4 + \cdots$
g) none of the above

Answer: (e). The point x = 0 is a regular singular point of this ODE. We use the method of Frobenius to find a solution

$$y = \sum_{n=0}^{\infty} c_n x^{n+r} \qquad xy' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} \qquad x^2 y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r}$$

We substitute in and get

$$\begin{aligned} x^{2}y'' + (x^{2} - x)y' + y &= \sum_{n=0}^{\infty} (n+r)(n+r-1)c_{n}x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_{n}x^{n+r+1} - \sum_{n=0}^{\infty} (n+r)c_{n}x^{n+r} + \sum_{n=0}^{\infty} c_{n}x^{n+r} &= 0 \\ &= \sum_{n=0}^{\infty} (n+r)(n+r-1)c_{n}x^{n+r} + \sum_{n=1}^{\infty} (n-1+r)c_{n-1}x^{n+r} - \sum_{n=0}^{\infty} (n+r)c_{n}x^{n+r} + \sum_{n=0}^{\infty} c_{n}x^{n+r} \\ &= [r(r-1)c_{0} - rc_{0} + c_{0}] + \sum_{n=1}^{\infty} [(n+r)(n+r-1)c_{n} + (n-1+r)c_{n-1} - (n+r)c_{n} + c_{n}]x^{n+r} \end{aligned}$$

We simplify and conclude that

$$(r-1)^2 c_0 = 0$$
 and $(n+r-1)^2 c_n + (n+r-1)c_{n-1} = 0$ when $n \ge 1$.

The indicial roots are both r = 1, so the method of Frobenius says that only one such series solution will exist (the other will involve a logarithm). We have

$$c_1 = -\frac{1}{1+1-1}c_0 = -c_0$$
 $c_2 = -\frac{1}{2+1-1}c_1 = \frac{c_0}{2}$ $c_3 = -\frac{1}{3+1-1}c_2 = -\frac{c_0}{6}$

In fact, we can see that there is a pattern: $c_n = \frac{(-1)^n}{n!}$. Our full series will be

$$y = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{n+1}$$

We can even identify this as a Taylor series: $y = xe^{-x}$.

10. Let y be a function satisfying y(0) = y'(0) = y''(0) = 0 which is a solution of the ODE

$$y''' - 4y'' + 4y' = 4.$$

Compute y(1).

a) y(1) = -5 b) y(1) = 4 c) y(1) = -3 d) y(1) = 2 e) y(1) = -1 f) y(1) = 0 g) none of the above Answer: (d). The complementary solution will have the form $y_c = c_1 e^{2x} + c_2 x e^{2x} + c_3$. The method of undetermined coefficients says that we should find a particular solution in the form $y_p = Ax$ (we multiply by x because the complementary solution includes constants). That method gives a solution when A = 1. Thus the solution is of the form $y = c_1 e^{2x} + c_2 x e^{2x} + c_3 + x$. To solve the IVP we differentiate this solution 0, 1, and 2 times before setting x = 0 in each case:

$$c_1 + c_3 = 0$$

 $2c_1 + c_2 + 1 = 0$
 $4c_1 + 4c_2 = 0$

The solution of this system is $c_1 = -1$, $c_2 = c_3 = 1$, so we have

$$y = -e^{2x} + xe^{2x} + 1 + x.$$

11. Solve the following system of differential equations subject to the initial conditions $y_1(0) = 1$ and $y_2(0) = 3$. Clearly state your solution. What is $y_1(1)$?

~

$$\begin{array}{ll} \displaystyle \frac{dy_1}{dx} = 3y_1 - y_2 \\ \displaystyle \frac{dy_2}{dx} = & y_1 + y_2 \end{array}$$
a) $y_1(1) = 2e - 1$
e) $y_1(1) = 7e$
b) $y_1(1) = 2e - 1$
f) $y_1(1) = 3$
f) $y_1(1) = -e^2$
c) $y_1(1) = 3$
f) $y_1(1) = -e^2$
g) none of the above

Answer: (f). We find that the characteristic equation of the matrix

$$\left[\begin{array}{rrr} 3 & -1 \\ 1 & 1 \end{array}\right]$$

is $(3 - \lambda)(1 - \lambda) + 1 = 0$, or $\lambda^2 - 4\lambda + 4 = 0$. This has a double root $\lambda = 2$. There will be only one eigenvector, for example,

$$\vec{E} = \left[\begin{array}{c} 1\\1 \end{array} \right].$$

For the second solution, we need a generalized eigenvector $\vec{E_2}$ such that

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \vec{E}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

One possible solution (out of infinitely many possibilities) is

$$\vec{E}_2 = \left[\begin{array}{c} 1\\ 0 \end{array} \right].$$

We conclude that the general solution of the system has the form

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = C_1 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 \left(t e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right).$$

Now solve

$$C_1 \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1\\3 \end{bmatrix}.$$

We find that $C_1 = 3$ and $C_2 = -2$. Consequently

$$\left[\begin{array}{c} y_1(t)\\ y_2(t) \end{array}\right] = \left[\begin{array}{c} e^{2t} - 2te^{2t}\\ 3e^{2t} - 2te^{2t} \end{array}\right].$$

Plugging in t = 1 gives the answer.

- 12. Find a solution to the initial value problem y'' 2xy' 4y = 0 subject to the initial conditions y(0) = 0 and y'(0) = 1 which takes the form of a power series centered at the origin. What is the coefficient in front of x^5 in the series?
 - a) -1 b) 0 c) $\frac{1}{2}$ d) 1 e) 2 f) 6 g) none of the above

Answer: (c). The point x = 0 is ordinary, so we make a standard power series solution:

$$y = \sum_{n=0}^{\infty} c_n x^n$$
 $y' = \sum_{n=0}^{\infty} n c_n x^{n-1}$ $y'' = \sum_{n=0}^{\infty} n(n-1) c_n x^{n-2}.$

We substitute these into the equation and get

$$\sum_{n=0}^{\infty} n(n-1)c_n x^{n-2} - 2x \sum_{n=0}^{\infty} nc_n x^{n-1} - 4 \sum_{n=0}^{\infty} c_n x^n = 0$$

Next we can combine the last two sums:

$$\sum_{n=0}^{\infty} n(n-1)c_n x^{n-2} + \sum_{n=0}^{\infty} (-2n-4)c_n x^n = 0.$$

After that we shift the index of summation in the first sum:

$$\sum_{n=-2}^{\infty} (n+2)(n+1)c_{n+2}x^n + \sum_{n=0}^{\infty} (-2n-4)c_nx^n = 0.$$

Because (n+2)(n+1) = 0 both when n = -2 and n = -1, we can drop these two terms from the first sum and combine again:

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)c_{n+2} - 2(n+2)c_n \right] x^n.$$

Our recurrence formula is found by setting these coefficients equal to zero:

$$(n+2)(n+1)c_{n+2} - 2(n+2)c_n = 0 \Rightarrow c_{n+2} = \frac{2c_n}{n+1}.$$

The initial conditions give $c_0 = 0$ and $c_1 = 1$. Computing the rest by means of the formula gives

$$c_2 = \frac{2c_0}{1} = 0$$
 $c_3 = \frac{2c_1}{2} = 1$ $c_4 = 0$ $c_5 = \frac{2c_3}{4} = \frac{1}{2}$

- 13. Circle "T" for true or "F" for false in the space provided to the left of the following statements. You **DO NOT** need to justify your answer for full credit.
- (T F) Every 2 × 2 diagonalizable matrix with repeated eigenvalue is a diagonal matrix. True: $A = PDP^{-1}$ and D is a multiple of the identity, so A must also be.
- (T F) There is a vector field \vec{F} such that $\nabla \times \vec{F} = \langle x, y, z \rangle$. False: The divergence of the curl is always equal to zero, but the divergence of $\langle x, y, z \rangle$ equals 3.
- (T F) If det(A) = 0, then the system $A\vec{X} = 0$ has infinitely many solutions. True: det(A) = 0 means that A has an eigenvector \vec{E} which has eigenvalue zero. Any multiple of \vec{E} will solve the system $A\vec{X} = 0$.
- (T F) If y_1 and y_2 are solutions to a non-homogeneous linear differential equation, then $y_1 + y_2$ is also a solution. False: Try the differential equation y' = 1 and take $y_1 = y_2 = x$.
- (T F) If A and B are square matrices such that $AB^2 = I$, then B is invertible. True: $\det(AB^2) = (\det A)(\det B)(\det B) = \det I = 1$. In particular, det A and det B must both be nonzero, meaning they're both invertible.