1. Solve the equations for x.

$$
\begin{aligned}
2 x+3 y+2 z & =1 \\
x+0 y+3 z & =2 \\
2 x+2 y+3 z & =3
\end{aligned}
$$

Hint:

$$
\text { If } A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{array}\right] \text { then } A^{-1}=\left[\begin{array}{rrr}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{array}\right]
$$

a) $x=-1$
b) $x=0$
c) $x=2$
d) $x=5$
e) $x=7$
f) $x=11$
g) none of the above

Answer: (f). To find the solution vector, we need only apply the inverse:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
11 \\
-5 \\
-3
\end{array}\right]
$$

This answer can easily be verified by substituting back into the original system.
2. The lemniscate of Gerono is parametrized by the formulas

$$
\begin{aligned}
& x(t)=\cos t \\
& y(t)=\sin t \cos t
\end{aligned}
$$

Compute the area of the right-hand lobe (corresponding to the range of parameters $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$). Hint: Use Green's Theorem and the differential $-y d x$. Near the end you'll likely need to use a u-substitution.
a) $\frac{1}{6}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) $\frac{2}{3}$
e) $\frac{5}{6}$
f) 1
g) none of the above

Answer: (d). For this specific differential, we have $P=-y$ and $Q=0$, so $Q_{x}-P_{y}=1$. Thus by Green's Theorem we have

$$
\iint_{A} 1 \frac{d}{A}=\int_{\partial A}-y d x
$$

that is, the area of A is equal to the line integral of $-y d x$ along the boundary of A. Writing the line integral using the given parametrization, we have

$$
\int_{\partial A}-y d x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}-\sin t \cos t(-\sin t) d t=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} t \cos t d t
$$

Substituting $u=\sin t$ gives

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} t \cos t d t=\int_{-1}^{1} u^{2} d u=\frac{2}{3}
$$

3. Calculate the outward flux of \vec{F} across S if $\vec{F}(x, y, z)=3 x y^{2} \vec{i}+x e^{z} \vec{j}+z^{3} \vec{k}$ and S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.
a) 0
b) $-\frac{\pi}{4}$
c) $\frac{11 \pi}{8}$
d) 3π
e) $\frac{9 \pi}{5}$
f) $\frac{9 \pi}{2}$
g) none of the above

Answer: (f). We use the divergence theorem. First we compute the divergence of \vec{F} :

$$
\nabla \cdot \vec{F}=\frac{\partial}{\partial x}\left(3 x y^{2}\right)+\frac{\partial}{\partial y}\left(x e^{z}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)=3\left(y^{2}+z^{2}\right)
$$

If C is the interior of the cylinder that is described in the problem and ∂C is the surface bounding it, then

$$
\iint_{\partial C} \vec{F} \cdot \vec{n} d S=\iiint_{C} 3\left(y^{2}+z^{2}\right) d V
$$

We can evaluate the integral in cylindrical coordinates (r, θ, x), where (r, θ) represent the polar coordinates in the $y z$-plane.

$$
\iint_{\partial C} \vec{F} \cdot \vec{n} d S=\iiint_{C} 3\left(y^{2}+z^{2}\right) d V=\int_{-1}^{2} \int_{0}^{2 \pi} \int_{0}^{1} 3 r^{2} r d r d \theta d x=\frac{9 \pi}{2}
$$

4. Compute the outward flux of $\nabla \times \vec{F}$ through the surface of the ellipsoid $2 x^{2}+2 y^{2}+z^{2}=8$ lying above the plane $z=0$, where

$$
\vec{F}=(3 x-y) \vec{i}+(x+3 y) \vec{j}+\left(1+x^{2}+y^{2}+z^{2}\right) \vec{k}
$$

a) 0
b) 2π
c) 3π
d) 8π
e) 12π
f) 16π
g) none of the above

Answer: (d). We use Stokes' theorem. If S is the top half of the ellipsoid, then its boundary will be a curve C obtained by setting $z=0$. On the circle, $2 x^{2}+2 y^{2}=8$, meaning that C is the circle of radius 2 centered at the origin and lying in the $x y$-plane. Since the outward flux points upwards in the z-direction, the correct orientation of C is counterclockwise. We conclude

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S=\oint_{C}(3 x-y) d x+(x+3 y) d y+\left(1+x^{2}+y^{2}+z^{2}\right) d z
$$

We can parametrize C by $\vec{r}(t)=\langle 2 \cos t, 2 \sin t, 0\rangle$ for $t \in[0,2 \pi]$. We will get

$$
\begin{aligned}
\oint_{C}(3 x-y) d x+ & (x+3 y) d y+\left(1+x^{2}+y^{2}+z^{2}\right) d z \\
& =\int_{0}^{2 \pi}\left[(6 \cos t-2 \sin t)(-2 \sin t)+(2 \cos t+6 \sin t)(2 \cos (t))+\left(1+4 \cos ^{2} t+4 \sin ^{2} t\right)(0)\right] d t \\
& =\int_{0}^{2 \pi} 4\left[\sin ^{2} t+\cos ^{2} t\right] d t=8 \pi
\end{aligned}
$$

5. Find a 2×2 real matrix A that has

$$
\text { an eigenvalue } \lambda_{1}=1 \text { with eigenvector } \vec{E}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and an eigenvalue } \lambda_{2}=-1 \text { with eigenvector } \vec{E}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text {. }
$$

Then compute the determinant of $A^{10}+A$ and write your answer in the box below.
a) $A=\left[\begin{array}{ll}-\frac{5}{3} & \frac{4}{3} \\ -\frac{4}{3} & \frac{5}{3}\end{array}\right]$
b) $A=\left[\begin{array}{ll}-\frac{4}{3} & \frac{5}{3} \\ -\frac{5}{3} & \frac{4}{3}\end{array}\right]$
c) $A=\left[\begin{array}{ll}\frac{5}{3} & \frac{4}{3} \\ \frac{4}{3} & \frac{5}{3}\end{array}\right]$
d) $A=\left[\begin{array}{ll}\frac{4}{3} & \frac{5}{3} \\ \frac{5}{3} & \frac{4}{3}\end{array}\right]$
e) $A=\left[\begin{array}{ll}\frac{5}{3} & -\frac{4}{3} \\ \frac{4}{3} & -\frac{5}{3}\end{array}\right]$
f) $A=\left[\begin{array}{ll}\frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & -\frac{4}{3}\end{array}\right]$
g) none of the above

Answer: (a). If such a matrix A exists, it should be diagonalizable, meaning $D=P^{-1} A P$ when

$$
D=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \text { when } P=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] .
$$

We can find A by the formula $A=P D P^{-1}$. We have

$$
P^{-1}=\left[\begin{array}{rr}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right], \quad D P^{-1}=\left[\begin{array}{rr}
-\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & \frac{1}{3}
\end{array}\right], \quad P D P^{-1}=\left[\begin{array}{ll}
-\frac{5}{3} & \frac{4}{3} \\
-\frac{4}{3} & \frac{5}{3}
\end{array}\right] .
$$

We can compute A^{10} using the diagonalization: $A^{10}=P D^{10} P^{-1}$. The tenth power of D is the identity matrix, so $A^{10}=P I P^{-1}=P P^{-1}=I$. We conclude

$$
\operatorname{det}\left(A^{10}+A\right)=\operatorname{det}(A+I)=\operatorname{det}\left[\begin{array}{ll}
-\frac{2}{3} & \frac{4}{3} \\
-\frac{4}{3} & \frac{8}{3}
\end{array}\right]=0 .
$$

Alternately, $\operatorname{det}\left(A^{10}+A\right)=\operatorname{det}\left(D^{10}+D\right)=0$ since $D+I$ has a row which is identically zero.
6. Identify all possible eigenvalues of an $n \times n$ matrix A if A which satisfies the following matrix equation:

$$
A-2 I=-A^{2} .
$$

Must A be invertible? Record your answer in the box below and provide justification for your answer.
a) $\lambda=0,1$
b) $\lambda=0,2$
c) $\lambda=0,1,-2$
d) $\lambda=1,-2$
e) $\lambda=0,1,-3$
f) $\lambda=1,-3$
g) none of the above
Is A invertible? \square

Answer: (d). Suppose \vec{E} is an eigenvector of A with eigenvalue λ (recall that every eigenvalue has at least one eigenvector). We know that $A \vec{E}=\lambda \vec{E}$, so $(A-2 I) \vec{E}=(\lambda-2) \vec{E}$. Likewise, $-A^{2} \vec{E}=-A(\lambda \vec{E})=-\lambda^{2} \vec{E}$. We conclude that $(\lambda-2) \vec{E}=-\lambda^{2} \vec{E}$ when the relationship $A-2 I=-A^{2}$ holds. Since \vec{E} is never zero, we have $\lambda-2=-\lambda^{2}$. Solving for λ gives $\lambda=1,-2$. These are the only possible eigenvalues-we haven't shown that they must be eigenvalues (take $A=I$, for example; it satisfies the equation but has not eigenvalue equal to -2), but that no other possible eigenvalues could occur. In particular, A must be invertible because 0 cannot be an eigenvalue. Alternately, notice that our formula implies that

$$
I=\frac{1}{2}\left(A+A^{2}\right)=A\left(\frac{1}{2} I+\frac{1}{2} A\right) .
$$

Not only must A be invertible, but its inverse equals $\frac{1}{2} I+\frac{1}{2} A$.
7. Solve the differential equation

$$
9 x^{2} y^{\prime \prime}+2 y=0
$$

on the interval $(0, \infty)$ subject to the initial conditions $y(1)=1$ and $y^{\prime}(1)=\frac{4}{3}$.
a) $y=2 x^{\frac{2}{3}}-3 x^{\frac{1}{3}}$
b) $y=3 x^{\frac{2}{3}}-2 x^{\frac{1}{3}}$
c) $y=3 x^{\frac{3}{2}}-3 x^{3}$
d) $y=3 x^{\frac{3}{2}}-2 x^{3}$
e) $y=2 x^{2}-3 x$
f) $y=3 x^{2}-2 x$
g) none of the above

Answer: (b). This is a Cauchy-Euler equation. The auxiliary equation is $9 m(m-1)+2=0$, which factors as $(3 m-$ $2)(3 m-1)=0$. Thus the general solution will have the form $y=c_{1} x^{\frac{2}{3}}+c_{2} x^{\frac{1}{3}}$. Solving the system of equations

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
\frac{2}{3} c_{2}+\frac{1}{3} c_{2} & =\frac{4}{3}
\end{aligned}
$$

gives $c_{1}=3$ and $c_{2}=-2$.
8. Let $\vec{\omega}:=\langle 1,2,3\rangle$, and let $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$. Now consider the differential equation

$$
\frac{d}{d t} \vec{r}=\vec{\omega} \times \vec{r}
$$

Select the answer which correctly expresses this system of equations in matrix notation when

$$
\vec{X}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

Do not solve the system.
a) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -1 & 3 \\ 1 & 0 & -2 \\ -3 & 2 & 0\end{array}\right] \vec{X}$
b) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0\end{array}\right] \vec{X}$
c) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0\end{array}\right] \vec{X}$
d) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right] \vec{X}$
e) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & 0\end{array}\right] \vec{X}$
f) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -2 & 3 \\ 2 & 0 & -1 \\ -3 & 1 & 0\end{array}\right] \vec{X}$
g) none of the above

Answer: (c). First we simply expand the formula for the cross product:

$$
\begin{aligned}
\langle 1,2,3\rangle \times\langle x, y, z\rangle=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 & 3 \\
x & y & z
\end{array}\right| & =\left|\begin{array}{cc}
2 & 3 \\
y & z
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
1 & 3 \\
x & z
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & 2 \\
x & y
\end{array}\right| \vec{k} \\
& =(2 x-3 y) \vec{i}+(3 x-z) \vec{j}+(y-2 x) \vec{k}
\end{aligned}
$$

We write this vector as a column vector and discover that

$$
\begin{gathered}
{\left[\begin{array}{c}
2 x-3 y \\
3 x-z \\
y-2 x
\end{array}\right]\left[\begin{array}{rrr}
0 & -3 & 2 \\
3 & 0 & -1 \\
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .} \\
\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}
0 & -3 & 2 \\
3 & 0 & -1 \\
-2 & 1 & 0
\end{array}\right] \vec{X} .
\end{gathered}
$$

9. Select the answer below which corresponds to the first few terms in a power series solution of the differential equation

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+y=0
$$

Will there be a second, linearly independent series solution for this equation? Explain your answer.
a) $y=x^{\frac{1}{2}}+\frac{1}{2} x^{\frac{3}{2}}+\frac{1}{6} x^{\frac{5}{2}}+\frac{1}{12} x^{\frac{7}{2}}+\cdots$
b) $y=-x^{\frac{1}{2}}+\frac{1}{6} x^{\frac{3}{2}}-\frac{1}{12} x^{\frac{5}{2}}+\frac{1}{20} x^{\frac{7}{2}}+\cdots$
c) $y=x^{\frac{1}{2}}+x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{5}{2}}-\frac{1}{9} x^{\frac{7}{2}}+\cdots$
d) $y=x-x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\cdots$
e) $y=x-x^{2}+\frac{1}{2} x^{3}-\frac{1}{6} x^{4}+\cdots$
f) $y=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{9} x^{4}+\cdots$
g) none of the above

Answer: (e). The point $x=0$ is a regular singular point of this ODE. We use the method of Frobenius to find a solution

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n+r} \quad x y^{\prime}=\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r} \quad x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r}
$$

We substitute in and get

$$
\begin{aligned}
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+y & =\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r}+\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r+1}-\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r}=0 \\
& =\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r}+\sum_{n=1}^{\infty}(n-1+r) c_{n-1} x^{n+r}-\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r} \\
& =\left[r(r-1) c_{0}-r c_{0}+c_{0}\right]+\sum_{n=1}^{\infty}\left[(n+r)(n+r-1) c_{n}+(n-1+r) c_{n-1}-(n+r) c_{n}+c_{n}\right] x^{n+r}
\end{aligned}
$$

We simplify and conclude that

$$
(r-1)^{2} c_{0}=0 \text { and }(n+r-1)^{2} c_{n}+(n+r-1) c_{n-1}=0 \text { when } n \geq 1
$$

The indicial roots are both $r=1$, so the method of Frobenius says that only one such series solution will exist (the other will involve a logarithm). We have

$$
c_{1}=-\frac{1}{1+1-1} c_{0}=-c_{0} \quad c_{2}=-\frac{1}{2+1-1} c_{1}=\frac{c_{0}}{2} \quad c_{3}=-\frac{1}{3+1-1} c_{2}=-\frac{c_{0}}{6}
$$

In fact, we can see that there is a pattern: $c_{n}=\frac{(-1)^{n}}{n!}$. Our full series will be

$$
y=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n+1}
$$

We can even identify this as a Taylor series: $y=x e^{-x}$.
10. Let y be a function satisfying $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$ which is a solution of the ODE

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=4
$$

Compute $y(1)$.
a) $y(1)=-5$
b) $y(1)=4$
c) $y(1)=-3$
d) $y(1)=2$
e) $y(1)=-1 \quad$ f) $y(1)=0$
g) none of the above

Answer: (d). The complementary solution will have the form $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3}$. The method of undetermined coefficients says that we should find a particular solution in the form $y_{p}=A x$ (we multiply by x because the complementary solution includes constants). That method gives a solution when $A=1$. Thus the solution is of the form
$y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3}+x$. To solve the IVP we differentiate this solution 0,1 , and 2 times before setting $x=0$ in each case:

$$
\begin{aligned}
c_{1}+c_{3} & =0 \\
2 c_{1}+c_{2}+1 & =0 \\
4 c_{1}+4 c_{2} & =0
\end{aligned}
$$

The solution of this system is $c_{1}=-1, c_{2}=c_{3}=1$, so we have

$$
y=-e^{2 x}+x e^{2 x}+1+x
$$

11. Solve the following system of differential equations subject to the initial conditions $y_{1}(0)=1$ and $y_{2}(0)=3$. Clearly state your solution. What is $y_{1}(1)$?

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=3 y_{1}-y_{2} \\
& \frac{d y_{2}}{d x}=y_{1}+y_{2}
\end{aligned}
$$

a) $y_{1}(1)=2 e$
b) $y_{1}(1)=2 e-1$
c) $y_{1}(1)=3$
d) $y_{1}(1)=5 e^{2}$
e) $y_{1}(1)=7 e$
f) $y_{1}(1)=-e^{2}$
g) none of the above

Answer: (f). We find that the characteristic equation of the matrix

$$
\left[\begin{array}{rr}
3 & -1 \\
1 & 1
\end{array}\right]
$$

is $(3-\lambda)(1-\lambda)+1=0$, or $\lambda^{2}-4 \lambda+4=0$. This has a double root $\lambda=2$. There will be only one eigenvector, for example,

$$
\vec{E}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For the second solution, we need a generalized eigenvector \vec{E}_{2} such that

$$
\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \vec{E}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

One possible solution (out of infinitely many possibilities) is

$$
\vec{E}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

We conclude that the general solution of the system has the form

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=C_{1} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left(t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

Now solve

$$
C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

We find that $C_{1}=3$ and $C_{2}=-2$. Consequently

$$
\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{2 t}-2 t e^{2 t} \\
3 e^{2 t}-2 t e^{2 t}
\end{array}\right]
$$

Plugging in $t=1$ gives the answer.
12. Find a solution to the initial value problem $y^{\prime \prime}-2 x y^{\prime}-4 y=0$ subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$ which takes the form of a power series centered at the origin. What is the coefficient in front of x^{5} in the series?
a) -1
b) 0
c) $\frac{1}{2}$
d) 1
e) 2
f) 6
g) none of the above

Answer: (c). The point $x=0$ is ordinary, so we make a standard power series solution:

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n} \quad y^{\prime}=\sum_{n=0}^{\infty} n c_{n} x^{n-1} \quad y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}
$$

We substitute these into the equation and get

$$
\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}-2 x \sum_{n=0}^{\infty} n c_{n} x^{n-1}-4 \sum_{n=0}^{\infty} c_{n} x^{n}=0
$$

Next we can combine the last two sums:

$$
\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty}(-2 n-4) c_{n} x^{n}=0
$$

After that we shift the index of summation in the first sum:

$$
\sum_{n=-2}^{\infty}(n+2)(n+1) c_{n+2} x^{n}+\sum_{n=0}^{\infty}(-2 n-4) c_{n} x^{n}=0
$$

Because $(n+2)(n+1)=0$ both when $n=-2$ and $n=-1$, we can drop these two terms from the first sum and combine again:

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}-2(n+2) c_{n}\right] x^{n}
$$

Our recurrence formula is found by setting these coefficients equal to zero:

$$
(n+2)(n+1) c_{n+2}-2(n+2) c_{n}=0 \Rightarrow c_{n+2}=\frac{2 c_{n}}{n+1}
$$

The initial conditions give $c_{0}=0$ and $c_{1}=1$. Computing the rest by means of the formula gives

$$
c_{2}=\frac{2 c_{0}}{1}=0 \quad c_{3}=\frac{2 c_{1}}{2}=1 \quad c_{4}=0 \quad c_{5}=\frac{2 c_{3}}{4}=\frac{1}{2}
$$

13. Circle "T" for true or "F" for false in the space provided to the left of the following statements. You DO NOT need to justify your answer for full credit.
($\mathrm{T} \quad \mathrm{F}$) Every 2×2 diagonalizable matrix with repeated eigenvalue is a diagonal matrix.
True: $A=P D P^{-1}$ and D is a multiple of the identity, so A must also be.
$\left(\begin{array}{ll}\mathrm{T} & \mathrm{F}\end{array}\right)$ There is a vector field \vec{F} such that $\nabla \times \vec{F}=\langle x, y, z\rangle$.
False: The divergence of the curl is always equal to zero, but the divergence of $\langle x, y, z\rangle$ equals 3 .
($\mathrm{T} \quad \mathrm{F}$) If $\operatorname{det}(A)=0$, then the system $A \vec{X}=0$ has infinitely many solutions.
True: $\operatorname{det}(A)=0$ means that A has an eigenvector \vec{E} which has eigenvalue zero. Any multiple of \vec{E} will solve the system $A \vec{X}=0$.
$\left(\begin{array}{ll}\mathrm{T} & \mathrm{F}\end{array}\right)$ If y_{1} and y_{2} are solutions to a non-homogeneous linear differential equation, then $y_{1}+y_{2}$ is also a solution.
False: Try the differential equation $y^{\prime}=1$ and take $y_{1}=y_{2}=x$.
($\begin{array}{ll}\mathrm{T} & \mathrm{F}\end{array}$) If A and B are square matrixes such that $A B^{2}=I$, then B is invertible.
True: $\operatorname{det}\left(A B^{2}\right)=(\operatorname{det} A)(\operatorname{det} B)(\operatorname{det} B)=\operatorname{det} I=1$. In particular, $\operatorname{det} A$ and $\operatorname{det} B$ must both be nonzero, meaning they're both invertible.
