

Math 240 Final Exam Spring 2012

NAME:

INSTRUCTOR NAME:

TA NAME:

RECITATION NUMBER OR DAY/TIME:

Please turn off and put away all electronic devices. You may use both sides of a $8.5'' \times 11''$ sheet of paper for notes while you take this exam. No calculators, no course notes, no books, no help from your neighbors. Show all work on multiple choice questions: one point will be given for clearly circling the correct answer, and up to four points will be giving for the supporting work. Please **clearly mark** a multiple choice option for each problem. Remember to put your name at the top of this page. Good luck.

> My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

> > Your signature

For Official Use (do not write below this line)

QUESTION	Points	Your			
Number	Possible	Score			
1	5				
2	5				
3	5				
4	5				
5	5				
6	5				
7	5				
8	5				
9	5				
10	5				
11	5				
12	5				
13	5				
Total	65				

1. Solve the equations for x.

$$2x + 3y + 2z = 1$$

$$x + 0y + 3z = 2$$

$$2x + 2y + 3z = 3$$

Hint:
If $A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{bmatrix}$ then $A^{-1} = \begin{bmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{bmatrix}$.
a) $x = -1$ b) $x = 0$ c) $x = 2$ d) $x = 5$ e) $x = 7$ f) $x = 11$ g) none of the above

2. The lemniscate of Gerono is parametrized by the formulas

 $\begin{aligned} x(t) &= \cos t, \\ y(t) &= \sin t \cos t. \end{aligned}$

Compute the area of the right-hand lobe (corresponding to the range of parameters $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$). Hint: Use Green's Theorem and the differential -y dx. Near the end you'll likely need to use a *u*-substitution.

a) $\frac{1}{6}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$ e) $\frac{5}{6}$ f) 1 g) none of the above

3. Calculate the outward flux of \vec{F} across S if $\vec{F}(x, y, z) = 3xy^2\vec{i} + xe^z\vec{j} + z^3\vec{k}$ and S is the surface of the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = -1 and x = 2.

a) 0 b)
$$-\frac{\pi}{4}$$
 c) $\frac{11\pi}{8}$ d) 3π e) $\frac{9\pi}{5}$ f) $\frac{9\pi}{2}$ g) none of the above

4. Compute the outward flux of $\nabla \times \vec{F}$ through the surface of the ellipsoid $2x^2 + 2y^2 + z^2 = 8$ lying above the plane z = 0, where $\vec{F} = (2 - z)\vec{r} + (z + 2z)\vec{r} + (1 + z^2 + z^2)\vec{r}$

$$\vec{F} = (3x - y)\vec{i} + (x + 3y)\vec{j} + (1 + x^2 + y^2 + z^2)k.$$

a) 0 b) 2π c) 3π d) 8π e) 12π f) 16π g) none of the above

5. Find a 2×2 real matrix A that has

an eigenvalue $\lambda_1 = 1$ with eigenvector $\vec{E_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and an eigenvalue $\lambda_2 = -1$ with eigenvector $\vec{E_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Then compute the determinant of $A^{10} + A$ and write your answer in the box below.

a)
$$A = \begin{bmatrix} -\frac{5}{3} & \frac{4}{3} \\ -\frac{3}{3} & \frac{5}{3} \end{bmatrix}$$
 b) $A = \begin{bmatrix} -\frac{4}{3} & \frac{5}{3} \\ -\frac{5}{3} & \frac{4}{3} \end{bmatrix}$ c) $A = \begin{bmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{4}{3} & \frac{5}{3} \end{bmatrix}$ d) $A = \begin{bmatrix} \frac{4}{3} & \frac{5}{3} \\ \frac{3}{3} & \frac{4}{3} \end{bmatrix}$
e) $A = \begin{bmatrix} \frac{5}{3} & -\frac{4}{3} \\ \frac{4}{3} & -\frac{5}{3} \end{bmatrix}$ f) $A = \begin{bmatrix} \frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & -\frac{4}{3} \end{bmatrix}$ g) none of the above
 $\det(A^{10} + A) = \begin{bmatrix} -\frac{4}{3} & -\frac{5}{3} \\ \frac{4}{3} & -\frac{5}{3} \end{bmatrix}$

6. Identify all possible eigenvalues of an $n \times n$ matrix A if A which satisfies the following matrix equation:

 $A - 2I = -A^2.$

Must A be invertible? Record your answer in the box below and provide justification for your answer.

a) $\lambda = 0, 1$ b) $\lambda = 0, 2$ c) $\lambda = 0, 1, -2$ d) $\lambda = 1, -2$ e) $\lambda = 0, 1, -3$ f) $\lambda = 1, -3$ g) none of the above

Is A invertible?

7. Solve the differential equation

$$9x^2y'' + 2y = 0$$

on the interval $(0, \infty)$ subject to the initial conditions y(1) = 1 and $y'(1) = \frac{4}{3}$.

a)
$$y = 2x^{\frac{2}{3}} - 3x^{\frac{1}{3}}$$

b) $y = 3x^{\frac{2}{3}} - 2x^{\frac{1}{3}}$
c) $y = 3x^{\frac{3}{2}} - 3x^{3}$
d) $y = 3x^{\frac{3}{2}} - 2x^{3}$
e) $y = 2x^{2} - 3x$
f) $y = 3x^{2} - 2x$
g) none of the above

8. Let $\vec{\omega} := \langle 1, 2, 3 \rangle$, and let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$. Now consider the differential equation

$$\frac{d}{dt}\vec{r} = \vec{\omega} \times \vec{r}.$$

Select the answer which correctly expresses this system of equations in matrix notation when

$$\vec{X}(t) = \left[egin{array}{c} x(t) \\ y(t) \\ z(t) \end{array}
ight].$$

Do not solve the system.

a)
$$\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -1 & 3\\ 1 & 0 & -2\\ -3 & 2 & 0 \end{bmatrix} \vec{X}$$

d) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -1 & 2\\ 1 & 0 & -3\\ -2 & 3 & 0 \end{bmatrix} \vec{X}$

b)
$$\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -2 & 1\\ 2 & 0 & -3\\ -1 & 3 & 0 \end{bmatrix} \vec{X}$$
 c) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -3 & 2\\ 3 & 0 & -1\\ -2 & 1 & 0 \end{bmatrix} \vec{X}$
e) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -3 & 1\\ 3 & 0 & -2\\ -1 & 2 & 0 \end{bmatrix} \vec{X}$ f) $\frac{d}{dt}\vec{X} = \begin{bmatrix} 0 & -2 & 3\\ 2 & 0 & -1\\ -3 & 1 & 0 \end{bmatrix} \vec{X}$

g) none of the above

9. Select the answer below which corresponds to the first few terms in a power series solution of the differential equation

$$x^{2}y'' + (x^{2} - x)y' + y = 0$$

Will there be a second, linearly independent series solution for this equation? Explain your answer.

a)
$$y = x^{\frac{1}{2}} + \frac{1}{2}x^{\frac{3}{2}} + \frac{1}{6}x^{\frac{5}{2}} + \frac{1}{12}x^{\frac{7}{2}} + \cdots$$
 b) $y = -x^{\frac{1}{2}} + \frac{1}{6}x^{\frac{3}{2}} - \frac{1}{12}x^{\frac{5}{2}} + \frac{1}{20}x^{\frac{7}{2}} + \cdots$ c) $y = x^{\frac{1}{2}} + x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{5}{2}} - \frac{1}{9}x^{\frac{7}{2}} + \cdots$
d) $y = x - x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \cdots$ e) $y = x - x^2 + \frac{1}{2}x^3 - \frac{1}{6}x^4 + \cdots$ f) $y = x + x^2 + \frac{1}{2}x^3 + \frac{1}{9}x^4 + \cdots$
g) none of the above

10. Let y be a function satisfying y(0) = y'(0) = y''(0) = 0 which is a solution of the ODE

$$y''' - 4y'' + 4y' = 4.$$

Compute y(1). a) y(1) = -5 b) y(1) = 4 c) y(1) = -3 d) y(1) = 2 e) y(1) = -1 f) y(1) = 0 g) none of the above 11. Solve the following system of differential equations subject to the initial conditions $y_1(0) = 1$ and $y_2(0) = 3$. Clearly state your solution. What is $y_1(1)$?

$$\frac{dy_1}{dx} = 3y_1 - y_2$$
$$\frac{dy_2}{dx} = y_1 + y_2$$

a)
$$y_1(1) = 2e$$

b) $y_1(1) = 2e - 1$
c) $y_1(1) = 3$
d) $y_1(1) = 5e^2$
e) $y_1(1) = 7e$
f) $y_1(1) = -e^2$
g) none of the above

12. Find a	a solution t	to the in	nitial value	proble	m $y'' - 2xy$	∫′ — 4	4y = 0	subject	to the	initial con	ditic	ons $y(0)$) = 0	and \boldsymbol{y}	$\mu'(0) = 1$
which	takes the	form o	f a power	series of	centered at	the	origin.	What	is the	coefficien	t in	front of	of x^5	in the	e series?
a) –	- 1	b) 0	c)	$\frac{1}{2}$	d) 1	L		e) 2		f) 6		g)	none	of the	above

() - 1	b) 0	$^{\mathrm{c})}$ $\overline{2}$	d) 1	e) 2	f) 6	g) none of the above
--------	------	---------------------------------	------	------	------	----------------------

- 13. Circle "T" for true or "F" for false in the space provided to the left of the following statements. You **DO NOT** need to justify your answer for full credit.
- (T F) Every 2×2 diagonalizable matrix with repeated eigenvalue is a diagonal matrix.

(T F) There is a vector field \vec{F} such that $\nabla \times \vec{F} = \langle x, y, z \rangle$.

(T F) If det(A) = 0, then the system $A\vec{X} = 0$ has infinitely many solutions.

(T F) If y_1 and y_2 are solutions to a non-homogeneous linear differential equation, then $y_1 + y_2$ is also a solution.

(T F) If A and B are square matrices such that $AB^2 = I$, then B is invertible.

Scratch Work Page—Will Not Be Graded If Detached