Name:
Instructor Name:
TA Name:
Recitation Number or Day/Time:

Please turn off and put away all electronic devices. You may use both sides of a $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper for notes while you take this exam. No calculators, no course notes, no books, no help from your neighbors. Show all work on multiple choice questions: one point will be given for clearly circling the correct answer, and up to four points will be giving for the supporting work. Please clearly mark a multiple choice option for each problem. Remember to put your name at the top of this page. Good luck.

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Your signature

For Official Use (do not write below this line)

Question Number	Pointis Possible	Your Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	5	
10	5	
11	5	
12	5	
13	5	
TOTAL	65	

1. Solve the equations for x.

$$
\begin{array}{r}
2 x+3 y+2 z=1 \\
x+0 y+3 z=2 \\
2 x+2 y+3 z=3
\end{array}
$$

Hint:

$$
\text { If } A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{array}\right] \text { then } A^{-1}=\left[\begin{array}{rrr}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{array}\right]
$$

a) $x=-1$
b) $x=0$
c) $x=2$
d) $x=5$
e) $x=7$
f) $x=11$
g) none of the above
2. The lemniscate of Gerono is parametrized by the formulas

$$
\begin{aligned}
& x(t)=\cos t \\
& y(t)=\sin t \cos t
\end{aligned}
$$

Compute the area of the right-hand lobe (corresponding to the range of parameters $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$). Hint: Use Green's Theorem and the differential $-y d x$. Near the end you'll likely need to use a u-substitution.
a) $\frac{1}{6}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) $\frac{2}{3}$
e) $\frac{5}{6}$
f) 1
g) none of the above
3. Calculate the outward flux of \vec{F} across S if $\vec{F}(x, y, z)=3 x y^{2} \vec{i}+x e^{z} \vec{j}+z^{3} \vec{k}$ and S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.
a) 0
b) $-\frac{\pi}{4}$
c) $\frac{11 \pi}{8}$
d) 3π
e) $\frac{9 \pi}{5}$
f) $\frac{9 \pi}{2}$
g) none of the above
4. Compute the outward flux of $\nabla \times \vec{F}$ through the surface of the ellipsoid $2 x^{2}+2 y^{2}+z^{2}=8$ lying above the plane $z=0$, where

$$
\vec{F}=(3 x-y) \vec{i}+(x+3 y) \vec{j}+\left(1+x^{2}+y^{2}+z^{2}\right) \vec{k}
$$

a) 0
b) 2π
c) 3π
d) 8π
e) 12π
f) 16π
g) none of the above
5. Find a 2×2 real matrix A that has
an eigenvalue $\lambda_{1}=1$ with eigenvector $\vec{E}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and an eigenvalue $\lambda_{2}=-1$ with eigenvector $\vec{E}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Then compute the determinant of $A^{10}+A$ and write your answer in the box below.
a) $A=\left[\begin{array}{cc}-\frac{5}{3} & \frac{4}{3} \\ -\frac{4}{3} & \frac{5}{3}\end{array}\right]$
b) $A=\left[\begin{array}{rr}-\frac{4}{3} & \frac{5}{3} \\ -\frac{5}{3} & \frac{4}{3}\end{array}\right]$
c) $A=\left[\begin{array}{ll}\frac{5}{3} & \frac{4}{3} \\ \frac{4}{3} & \frac{5}{3}\end{array}\right]$
d) $A=\left[\begin{array}{ll}\frac{4}{3} & \frac{5}{3} \\ \frac{5}{3} & \frac{4}{3}\end{array}\right]$
e) $A=\left[\begin{array}{ll}\frac{5}{3} & -\frac{4}{3} \\ \frac{4}{3} & -\frac{5}{3}\end{array}\right]$
f) $A=\left[\begin{array}{ll}\frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & -\frac{4}{3}\end{array}\right]$
g) none of the above
$\operatorname{det}\left(A^{10}+A\right)=\square$
6. Identify all possible eigenvalues of an $n \times n$ matrix A if A which satisfies the following matrix equation:

$$
A-2 I=-A^{2}
$$

Must A be invertible? Record your answer in the box below and provide justification for your answer.
a) $\lambda=0,1$
b) $\lambda=0,2$
c) $\lambda=0,1,-2$
d) $\lambda=1,-2$
e) $\lambda=0,1,-3$
f) $\lambda=1,-3$
g) none of the above

Is A invertible? \square
7. Solve the differential equation

$$
9 x^{2} y^{\prime \prime}+2 y=0
$$

on the interval $(0, \infty)$ subject to the initial conditions $y(1)=1$ and $y^{\prime}(1)=\frac{4}{3}$.
a) $y=2 x^{\frac{2}{3}}-3 x^{\frac{1}{3}}$
b) $y=3 x^{\frac{2}{3}}-2 x^{\frac{1}{3}}$
c) $y=3 x^{\frac{3}{2}}-3 x^{3}$
d) $y=3 x^{\frac{3}{2}}-2 x^{3}$
e) $y=2 x^{2}-3 x$
f) $y=3 x^{2}-2 x$
g) none of the above
8. Let $\vec{\omega}:=\langle 1,2,3\rangle$, and let $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$. Now consider the differential equation

$$
\frac{d}{d t} \vec{r}=\vec{\omega} \times \vec{r} .
$$

Select the answer which correctly expresses this system of equations in matrix notation when

$$
\vec{X}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

Do not solve the system.
a) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -1 & 3 \\ 1 & 0 & -2 \\ -3 & 2 & 0\end{array}\right] \vec{X}$
b) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0\end{array}\right] \vec{X}$
c) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0\end{array}\right] \vec{X}$
d) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right] \vec{X}$
e) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & 0\end{array}\right] \vec{X}$
f) $\frac{d}{d t} \vec{X}=\left[\begin{array}{rrr}0 & -2 & 3 \\ 2 & 0 & -1 \\ -3 & 1 & 0\end{array}\right] \vec{X}$
g) none of the above
9. Select the answer below which corresponds to the first few terms in a power series solution of the differential equation

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+y=0
$$

Will there be a second, linearly independent series solution for this equation? Explain your answer.
a) $y=x^{\frac{1}{2}}+\frac{1}{2} x^{\frac{3}{2}}+\frac{1}{6} x^{\frac{5}{2}}+\frac{1}{12} x^{\frac{7}{2}}+\cdots$
b) $y=-x^{\frac{1}{2}}+\frac{1}{6} x^{\frac{3}{2}}-\frac{1}{12} x^{\frac{5}{2}}+\frac{1}{20} x^{\frac{7}{2}}+\cdots$
c) $y=x^{\frac{1}{2}}+x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{5}{2}}-\frac{1}{9} x^{\frac{7}{2}}+\cdots$
d) $y=x-x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\cdots$
e) $y=x-x^{2}+\frac{1}{2} x^{3}-\frac{1}{6} x^{4}+\cdots$
f) $y=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{9} x^{4}+\cdots$
g) none of the above
10. Let y be a function satisfying $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$ which is a solution of the ODE

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=4
$$

Compute $y(1)$.
a) $y(1)=-5$
b) $y(1)=4$
c) $y(1)=-3$
d) $y(1)=2$
e) $y(1)=-1$
f) $y(1)=0$
g) none of the above
11. Solve the following system of differential equations subject to the initial conditions $y_{1}(0)=1$ and $y_{2}(0)=3$. Clearly state your solution. What is $y_{1}(1)$?

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=3 y_{1}-y_{2} \\
& \frac{d y_{2}}{d x}=y_{1}+y_{2}
\end{aligned}
$$

a) $y_{1}(1)=2 e$
b) $y_{1}(1)=2 e-1$
c) $y_{1}(1)=3$
d) $y_{1}(1)=5 e^{2}$
e) $y_{1}(1)=7 e$
f) $y_{1}(1)=-e^{2}$
g) none of the above
12. Find a solution to the initial value problem $y^{\prime \prime}-2 x y^{\prime}-4 y=0$ subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$ which takes the form of a power series centered at the origin. What is the coefficient in front of x^{5} in the series?
a) -1
b) 0
c) $\frac{1}{2}$
d) 1
e) 2
f) 6
g) none of the above
13. Circle "T" for true or "F" for false in the space provided to the left of the following statements. You DO NOT need to justify your answer for full credit.
($\mathrm{T} \quad \mathrm{F}$) Every 2×2 diagonalizable matrix with repeated eigenvalue is a diagonal matrix.
($\left.\begin{array}{ll}\mathrm{T} & \mathrm{F}\end{array}\right)$ There is a vector field \vec{F} such that $\nabla \times \vec{F}=\langle x, y, z\rangle$.
($\mathrm{T} \quad \mathrm{F}$) If $\operatorname{det}(A)=0$, then the system $A \vec{X}=0$ has infinitely many solutions.
$\left(\begin{array}{ll}\mathrm{T} & \mathrm{F}\end{array}\right)$ If y_{1} and y_{2} are solutions to a non-homogeneous linear differential equation, then $y_{1}+y_{2}$ is also a solution.
($\mathrm{T} \quad \mathrm{F}$) If A and B are square matrixes such that $A B^{2}=I$, then B is invertible.

Scratch Work Page-Will Not Be Graded If Detached

