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1. Solve the equations for x.
2x + 3y + 2z = 1
x + 0y + 3z = 2

2x + 2y + 3z = 3

Hint:

If A =

 2 3 2
1 0 3
2 2 3

 then A−1 =

 −6 −5 9
3 2 −4
2 2 −3

 .
a) x = −1 b) x = 0 c) x = 2 d) x = 5 e) x = 7 f) x = 11 g) none of the above



2. The lemniscate of Gerono is parametrized by the formulas

x(t) = cos t,

y(t) = sin t cos t.

Compute the area of the right-hand lobe (corresponding to the range of parameters −π2 ≤ t ≤ π
2 ). Hint: Use Green’s

Theorem and the differential −ydx. Near the end you’ll likely need to use a u-substitution.

a)
1

6
b)

1

3
c)

1

2
d)

2

3
e)

5

6
f) 1 g) none of the above



3. Calculate the outward flux of ~F across S if ~F (x, y, z) = 3xy2~i+ xez~j + z3~k and S is the surface of the solid bounded by
the cylinder y2 + z2 = 1 and the planes x = −1 and x = 2.

a) 0 b) − π

4
c)

11π

8
d) 3π e)

9π

5
f)

9π

2
g) none of the above



4. Compute the outward flux of ∇× ~F through the surface of the ellipsoid 2x2 + 2y2 + z2 = 8 lying above the plane z = 0,
where

~F = (3x− y)~i+ (x+ 3y)~j + (1 + x2 + y2 + z2)~k.

a) 0 b) 2π c) 3π d) 8π e) 12π f) 16π g) none of the above



5. Find a 2× 2 real matrix A that has

an eigenvalue λ1 = 1 with eigenvector ~E1 =

[
1
2

]
and an eigenvalue λ2 = −1 with eigenvector ~E1 =

[
2
1

]
.

Then compute the determinant of A10 +A and write your answer in the box below.

a) A =

[
− 5

3
4
3

− 4
3

5
3

]
b) A =

[
− 4

3
5
3

− 5
3

4
3

]
c) A =

[
5
3

4
3

4
3

5
3

]
d) A =

[
4
3

5
3

5
3

4
3

]
e) A =

[
5
3 − 4

3
4
3 − 5

3

]
f) A =

[
4
3 − 5

3
5
3 − 4

3

]
g) none of the above

det(A10 +A) =



6. Identify all possible eigenvalues of an n× n matrix A if A which satisfies the following matrix equation:

A− 2I = −A2.

Must A be invertible? Record your answer in the box below and provide justification for your answer.

a) λ = 0, 1 b) λ = 0, 2 c) λ = 0, 1,−2 d) λ = 1,−2 e) λ = 0, 1,−3 f) λ = 1,−3 g) none of the above

Is A invertible?

7. Solve the differential equation
9x2y′′ + 2y = 0

on the interval (0,∞) subject to the initial conditions y(1) = 1 and y′(1) = 4
3 .

a) y = 2x
2
3 − 3x

1
3 b) y = 3x

2
3 − 2x

1
3 c) y = 3x

3
2 − 3x3 d) y = 3x

3
2 − 2x3

e) y = 2x2 − 3x f) y = 3x2 − 2x g) none of the above



8. Let ~ω := 〈1, 2, 3〉, and let ~r(t) = 〈x(t), y(t), z(t)〉. Now consider the differential equation

d

dt
~r = ~ω × ~r.

Select the answer which correctly expresses this system of equations in matrix notation when

~X(t) =

 x(t)
y(t)
z(t)

 .
Do not solve the system.

a)
d

dt
~X =

 0 −1 3
1 0 −2
−3 2 0

 ~X b)
d

dt
~X =

 0 −2 1
2 0 −3
−1 3 0

 ~X c)
d

dt
~X =

 0 −3 2
3 0 −1
−2 1 0

 ~X

d)
d

dt
~X =

 0 −1 2
1 0 −3
−2 3 0

 ~X e)
d

dt
~X =

 0 −3 1
3 0 −2
−1 2 0

 ~X f)
d

dt
~X =

 0 −2 3
2 0 −1
−3 1 0

 ~X

g) none of the above



9. Select the answer below which corresponds to the first few terms in a power series solution of the differential equation

x2y′′ + (x2 − x)y′ + y = 0.

Will there be a second, linearly independent series solution for this equation? Explain your answer.

a) y = x
1
2 +

1

2
x

3
2 +

1

6
x

5
2 +

1

12
x

7
2 + · · · b) y = −x 1

2 +
1

6
x

3
2− 1

12
x

5
2 +

1

20
x

7
2 +· · · c) y = x

1
2 + x

3
2 +

1

2
x

5
2 − 1

9
x

7
2 + · · ·

d) y = x− x2 +
1

6
x3 − 1

12
x4 + · · · e) y = x− x2 +

1

2
x3 − 1

6
x4 + · · · f) y = x+ x2 +

1

2
x3 +

1

9
x4 + · · ·

g) none of the above



10. Let y be a function satisfying y(0) = y′(0) = y′′(0) = 0 which is a solution of the ODE

y′′′ − 4y′′ + 4y′ = 4.

Compute y(1).

a) y(1) = −5 b) y(1) = 4 c) y(1) = −3 d) y(1) = 2 e) y(1) = −1 f) y(1) = 0 g) none of the above



11. Solve the following system of differential equations subject to the initial conditions y1(0) = 1 and y2(0) = 3. Clearly
state your solution. What is y1(1)?

dy1
dx

= 3y1 − y2
dy2
dx

= y1 + y2

a) y1(1) = 2e b) y1(1) = 2e− 1 c) y1(1) = 3 d) y1(1) = 5e2

e) y1(1) = 7e f) y1(1) = −e2 g) none of the above



12. Find a solution to the initial value problem y′′ − 2xy′ − 4y = 0 subject to the initial conditions y(0) = 0 and y′(0) = 1
which takes the form of a power series centered at the origin. What is the coefficient in front of x5 in the series?

a) − 1 b) 0 c)
1

2
d) 1 e) 2 f) 6 g) none of the above



13. Circle “T” for true or “F” for false in the space provided to the left of the following statements. You DO NOT need to
justify your answer for full credit.

( T F ) Every 2× 2 diagonalizable matrix with repeated eigenvalue is a diagonal matrix.

( T F ) There is a vector field ~F such that ∇× ~F = 〈x, y, z〉.

( T F ) If det(A) = 0, then the system A ~X = 0 has infinitely many solutions.

( T F ) If y1 and y2 are solutions to a non-homogeneous linear differential equation, then y1 + y2 is also a solution.

( T F ) If A and B are square matrixes such that AB2 = I, then B is invertible.
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