MATH 114 – Sample Final Exam 1

1. A curve is given in parametric form by $x = e^{t^2-1}$, $y = t^3 + 1$. Its tangent line at the point (1,0) is

(a)
$$y = -\frac{3}{2}x + \frac{3}{2}$$
 (b) $y = -x + 1$ (c) $y = \frac{2}{3}x - \frac{2}{3}$ (d) $y = x - 1$ (e) $y = 0$

2. The arc length of the curve given in polar coordinates by $r = e^{\theta}$ for $0 \le \theta \le 3\pi$ is

(a)
$$2e^{6\pi}$$
 (b) $\sqrt{2}e^{3\pi}$ (c) $2e^{3\pi}$ (d) $\sqrt{2}(e^{6\pi}-1)$ (e) $\sqrt{2}(e^{3\pi}-1)$

- 3. The area of the region *inside* the cardioid $r = 2(1 + \sin \theta)$, *outside* the circle $r = 2\sin\theta$ and *above* the x-axis is
 - (a) $4 + \pi$ (b) $1 + 2\pi$ (c) 3π (d) $8 + 2\pi$ (e) $2 + 2\pi$
- 4. Consider the graph given parametrically by $x = t^3 + 1$, $y = 1 t^2$. Find the area under the graph, over the x axis, and between the lines x = 1 and x = 2.
 - (a) 1/3 (b) 2/5 (c) $\sqrt{2}/7$ (d) 13/17 (e) $3\pi/8$
- 5. What is the equation of the plane that is perpendicular to the vector $\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and that passes through the point (3,2,1)?
 - (a) 3x + 2y + z = 14(b) x - y + 2z = 3(c) x + y + z = 6(e) x - y + 2z = 6
- 6. What is the angle between the vectors $2\mathbf{i}$ and $5\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$?
 - (a) 0 (b) $\pi/8$ (c) $\pi/6$ (d) $\pi/4$ (e) $\pi/3$
- 7. The four vertices of a regular tetrahedron are $V_1 = (1, 0, 0), V_2 = (-1/2, \sqrt{3}/2, 0), V_3 = (-1/2, -\sqrt{3}/2, 0)$ and $V_4 = (0, 0, \sqrt{2})$. What is the cosine of the dihedral angle between any pair of faces of the tetrahedron? (The dihedral angle is the angle between the planes containing the faces).
 - (a) 0 (b) 1/3 (c) 1/2 (d) 2/3 (e) 1
- 8. Consider the tangent plane to the graph of $z = x^2y y + e^x + 1$ at (0,1,1). This plane meets the x-axis at the point where x =
 - (a) -2 (b) 0 (c) 1 (d) 3 (e) 6
- 9. Suppose $z = x^2y + y^2$, where x and y are each functions of t. When t = 0, we are given that x = 1, y = 2, dx/dt = 3 and dy/dt = 4. What is dz/dt when t = 0?
 - (a) 0 (b) 11 (c) 17 (d) 27 (e) 32

10. The function $f(x, y) = x^3 + 3x^2 - y^2$ has

- (a) two local maxima, no local minima, and no saddle points.
- (b) no local maxima, two local minima, and no saddle points.
- (c) no local maxima, no local minima, and two saddle points.
- (d) no local maxima, one local minimum, and one saddle point.
- (e) one local maximum, no local minima, and one saddle point.
- 11. The product of the maximum and minimum values of the function f(x, y) = xyon the ellipse $\frac{x^2}{9} + y^2 = 2$ is
 - (a) 12 (b) -12 (c) 9 (d) -9 (e) 0
- 12. Let S be the square in the xy-plane with vertices (0,2), (0,3), (1,2), and (1,3). Find the volume of the solid region lying over the square S and under the graph of $z = ye^{xy}$.

(a) 1 (b)
$$3\pi$$
 (c) $e^2 + 6$ (d) $2\pi e^3$ (e) $e^3 - e^2 - 1$

- 13. Let R be the region in the plane lying in the first quadrant, below the graph of $y = x^2$ and to the left of the line x = 1. Evaluate $\iint_R 2x \cos y \, dA$.
 - (a) 0 (b) $1 + \sqrt{2}$ (c) $2\pi/3$ (d) 17/6 (e) $1 \cos 1$.
- 14. Evaluate $\int_{0}^{\sqrt{\frac{\pi}{2}}} \int_{y}^{\sqrt{\frac{\pi}{2}}} \cos(x^2) \, dx \, dy$. (a) 1/2 (b) 1 (c) π (d) $\sqrt{\pi/2}$ (e) 2
- 15. Let *D* be the region $D = \{(x, y) | x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$. Evaluate $\iint_D e^{-x^2 y^2} dA$. (a) 1 + 1/e (b) $\pi(1 - e)$ (c) $(\pi/4)(1 - 1/e)$ (d) 1 - 1/e (e) π
- 16. Let B be the region (solid ball) bounded by the unit sphere $x^2 + y^2 + z^2 = 1$. Compute

$$\iiint_{D} \exp\left((x^{2} + y^{2} + z^{2})^{\frac{3}{2}}\right) dV.$$

(Here "exp" is the usual exponential function, i.e., $\exp(x) = e^x$). (a) $\frac{4\pi}{3}(e^{5/2} - 1)$ (b) $\frac{4\pi}{3}(e - 1)$ (c) $\frac{\pi}{3}(4e^{3/2} - 1)$ (d) $\frac{\pi}{3}(8e^{1/2} - 4)$ (e) $\frac{2\pi}{3}(e^{5/2} - e)$

17. Find a function u(x,t) with the properties that $\frac{\partial u}{\partial t} = 2u$, while on the line t = 0we have u(x,0) = 3x + 7. (a) $e^{2t} + 3x + 6$ (b) $e^{-2t} + 3x + 6$ (c) $(3x + 7)e^{2t}$ (d) $(3x + 7)e^{t+2}$ (e) $3x + 7e^{2t}$ 18. A particle moves along the y-axis in such a way that $tv + y = 4t^3$, where y is the position of the particle at time t and v is the velocity of the particle at time t. At time t = 1, the particle is at the point y = 2. What is the position of the particle at time t = 2?

(a)
$$y = 1$$
 (b) $y = \frac{17}{2}$ (c) $y = \frac{26}{3}$ (d) $y = \frac{28\sqrt{2} - 1}{2}$ (e) $y = \ln 4$

19. Let y = f(x) be a function such that y'' - 2y' + 2y = 0. Suppose that the line y = 1 is tangent to the graph of y = f(x) at x = 0. Then f(x) =

- (a) $2e^x \cos x + e^x \sin x$ (b) $e^{2x} - 2e^x$ (c) $\cos 2x + \sin 2x$ (d) $e^x (\cos x - \sin x)$ (e) $e^x \cos 2x + e^x \sin x$
- 20. A certain function y = f(x) satisfies the differential equation y'' = y + 2x, and the graph of y = f(x) passes through the origin. Also, f'(0) = 2. What is f''(1)?

(a)
$$2\pi e$$

(b) $\cos 1$
(c) $e^2 + e^{-2} + 2$
(e) $2(e - e^{-1})$