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Part III: Free Response
1.

h(t) = _________________________________________________________________

lim
t!"

#h (t) = ___________________________________________________________

2.
y(x) = _________________________________________________________________

3.
y(e) = _________________________________________________________________

4.

5.
x = _____________________ y = _______________________

-----------------------------------------------Please do not write below this line----------------------------------------------
Scores:

I. ____________ II. ____________ III. ____________ TOTAL:  _________
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True/False questions

In the appropriate space on your answer sheet, label each statement as True or False.  No justification is
required.

1. If f(x, y) and fy (x, y) are continuous on 0 < x < 3 and 0 < y < 3 then the initial value problem y' = f(x, y)
and y(1) = 2 has a unique solution for 0 < x < 3.

Questions 2, 3, 4, 5:  Consider the differential equation 

� 

! y = g(y)  where g(y) is given in the graph below:

2.  y = –2, y = 1 and y = 5 are constant solutions of 

� 

! y = g(y) .

3.  If the initial value y(0) = 4, the corresponding solution is increasing with a horizontal asymptote at 5.

4.  If the initial value  y(0) is greater than 5, the corresponding solution will be an increasing function.

5. If y(0) = –1, then the corresponding solution is increasing.

6. If 
!f
!x
 = !f

!y
 for all points (x, y) then f(x, y) = constant.

7. If f(x, y, z) = x2 + y2 + z2 then the highest point where f = 1 will have !f = 0.

8. The triangle ABC with vertices A = 2i + 4j, B = 5i – 2j and C = –3i – j is a right triangle.



Mathematics 114 Final Examination Spring 2004

3

Multiple Choice:
Work each problem in the space provided.  Write the letter corresponding to your answer in the
appropriate space on your answer sheet.

1. If R is the region x2 + y2 ! 4 , then x x2 + y2  dA
R
!!  is equivalent to

a) r2  d!dr
0

2"
#0

2
# b)  r2 cos! d!dr

0

2"

#0

2

# c) 4 r3 sin! d!dr
0

2"

#0

2

#

d) x x2 + y2  dydx
!2

2
"!2

2
" e) r3 cos!  d!dr

0

2"
#0

2
# f) 4 r2r drd!

0

2

"0

2

"

2. What is the area enclosed by one loop of the curve r2 = 2sin".
a) π b) 3 c) 2 d) 1 e) 1/2 f) 4
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3. Find the length of the curve 

� 

r(t) = 2ti + sin tj+ cos tk,  0 ! t ! 2" .
a) 

� 

! 12 b) 

� 

! 20  c) 4! d) 

� 

! 6 e) 

� 

! 18 f) 

� 

! 8

4. The value of # for which the vector v = -6i + #j + 3k is parallel to the plane z = 2x – 5y + 7 is
a) –3 b) –9/5 c) 0 d) 8/5 e) 2 f) 12
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5. Let g(x, t, z) = 

� 

1
t
x – z2t( ) .  What is the value of 

� 

! 2g
!z!t

 when x = 1, t = 2 and z = 3?

a) –27/3 b) –17/2 c) –12 d) 8 e) –2 f) 0

6. The function f(x, y) = x3 – y2 – 3x + y + 5 has critical points at P1 = 

� 

1, 1
2

! 
" 
# 

$ 
% 
&  and P2 = 

� 

–1, 1
2

! 
" 
# 

$ 
% 
& .  The nature

of these critical points is:
a) P1 = maximum; P2 = maximum  b) P1 = minimum; P2 = minimum
c) P1 = minimum; P2 = saddle d) P1 = saddle; P2 = maximum
e) P1 = saddle; P2 = minimum f) P1 = maximum ; P2 = saddle
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7. Find the volume of the solid bounded by the paraboloid z = x2 +y2 and the plane z = 1.
a) π/6 b) π/4 c) π/3 d) π/2 e) 2π/3 f) 5π/6

8. ""Use a linear approximation of the function f (x, y) = ex cos 2y  at (0, 0) to estimate f (0.1, –0.2).
a) 1.2 b) 1.1 c) 1 d) 0.9 e) 0.3 f) 0
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9. In solving the differential equation !y + x4y = 0  by use of a power series anx
n

n=0

!

" , what is the first value

of n beyond n = 0 for which the coefficient an  can be non-zero?
a) 1 b) 2 c) 3 d) 4 e) 5 f) 6

10.  The initial value problem 

� 

! y = x 3(1+ ey )  subject to y(0) = Awhere A is a constant:
a) always increases without bound as x increases to infinity
b) always increases to a finite limit as x increases to infinity
c) always increases to infinity at some finite x value
d) can exhibit more than one of behaviors a), b) and c), depending on the value of A
e) has no solution in a neighborhood of zero
f) has only the constant solution y= A
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11. The general solution of the differential equation 

� 

(3x 2 + 2y 2)dx + (4xy + 6y 2)dy = 0  is
a) 

� 

y ! x 3 + 2x 2 + x = C b) 

� 

x 3 + 2x 2y 2 = C c) 

� 

xy 3 + 2x 2y = C
d) 

� 

x 3 + 4xy 2 + y 2 = C e) 

� 

x 3 + 2xy 2 + 2y 3 = C f) 

� 

x 2 + xy + y 2 = C

12. Compute the third Picard iterate, y3, for !y = x + y subject to y(0) = 1.

a) y3 = 1 b) 

� 

y3 =1+ x + x 2 + x 3

3
+ x 4

4!
c) 

� 

y3 =1+ x 2 + x 4

4!

d) 

� 

y3 =1+ x + x 2 + x 3

3!
e) 

� 

y3 =1+ x + x 2

2
f) 

� 

y3 = x 2

2!
+ x 3

3!
+ x 4

4!



Mathematics 114 Final Examination Spring 2004

9

13. The general solution of the differential equation !!y + 4 !y + 4y = 0  is

a) y = c1e
2x + c2e

2x b) y = c1e
!2x + c2e

2x c) y = c1 + c2x
4

d) y = c1e
!2x + c2xe

!2x e) y = c1e
! x + c2e

3x f) y = c1 cos2x + c2 sin2x

14. Solve the initial value problem 

� 

! y " 1
x

y = xex  subject to  y(1) = 0.  From your solution, evaluate y(2).

a) 

� 

1
2
e2 b) 

� 

e2 c) 2(

� 

e2–e) d) 

� 

e2ln2 e) 

� 

e2+ln2 f) 

� 

e2+2
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 15.  Shown below are graphs of the solutions of three differential equations.  The graphs are drawn using the
initial condition y(0) = 0 and also !y (0) = 1 for the second order equations.

(i) y'' + y = 1/(10+x^2) 
(ii) y'' + y = sin(x)
(iii) y' = cos (x + y)

1 2 

3

The solution graphs shown match the differential equations (i), (ii) and (iii) in the order:

(a) 1, 2, 3 (b) 1, 3, 2 (c) 2, 1, 3 (d) 2, 3, 1 (e) 3, 1, 2 (f) 3, 2, 1
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Free Response Questions:
Work each problem in the space provided.  Write your answers in the appropriate spaces on your answer
sheet.

1.  A falling object is acted upon by gravity and air resistance; its height at time t is denoted h(t).  There is

acceleration due to gravity and air resistance, respectively -g and !k dh
dt

, so that the particle satisfies

!!h + k !h + g = 0 .
(a) What is the distance fallen, starting from rest, after time t?
(b) What is the limit as t goes to infinity of !h (t)  ?
[NOTE:  answers should be given in terms of g and k.]
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2. Solve !!y " x !y + 2y = 0 subject  to y(0) = 1,  !y (0) = 1  by power series expansion about x = 0. Write out

all non-zero terms in the solution through the term in x5.
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3. Solve the initial value problem 

� 

! ! y + 2 ! y + y = e– x

x
 subject  to  y(1) = 0, ! y (1) = e–1.  From your solution,

compute y(e).
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4.  Find the location of all absolute maxima of f (x, y) =  x3  – 3 x y2  on the unit disk {x2  +  y2  !  1} .
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5. A business produces two products, A and B.  Let x and y denote respectively the quantity of product A
and B produced.  Limitations on the company's resources require that 500x2 + 100y be at most 100,000.
Each unit of A produced yields a profit of $5,000 and each unit of B produced yields a $500 profit.
Given the constraint, what should x and y be to maximize profit?


