Circle one: Professor Pimsner
 Professor Scherr
 Professor Yip
 Professor Ziller

Name:
Penn Id\#: \qquad
Signature: \qquad
TA: \qquad
Recitation Day and Time: \qquad
You need to show your work, even for multiple choice problems. A correct answer with no work will get you 0 points. If you see a shortcut, you need to explain it. Please circle the answer for each multiple choice problem, and for all other problems put a square around the final answer. Each problem is worth 10 points. You are NOT allowed to use a calculator or cell phone, or any other electronic device.
(Do not fill these in; they are for grading purposes only.)
1)
9)
2)
10)
3)
11)
4)
12)
5)
13)
6)
14)
7)
15)
8)

Name:

1. Find the length of the curve given in parametric form by

$$
\mathbf{r}(t)=3 \sin t \mathbf{i}+3 \cos t \mathbf{j}+2 t^{3 / 2} \mathbf{k}
$$

for $3 \leq t \leq 8$.
Answer:
(a) 30
(b) 38
(c) 25
(d) 19
(e) 27

Name:
2. Max is walking on a mountain whose height is described by $H(x, y)=e^{x / y}$. Presently he is located at the point $(2,1)$. In what direction should he travel to get down the mountain as quickly as possible.

Answer:
(a) $\langle 1,-2\rangle$
(b) $\langle-1,2\rangle$
(c) $\langle 0,1\rangle$
(d) $\langle 2,-1\rangle$
(e) $\langle 1,1\rangle$

Name:
3. Determine local minima, local maxima, and saddle points for the function $f(x, y)=3 x^{2} y+$ $y^{3}-3 x^{2}-3 y^{2}$.

Name:
4. Find the maximum and minimum of the function $f(x, y)=e^{x y}$ in the region $x^{2}+4 y^{2} \leq 1$.

Name:
5. Let $z=x e^{x y}$ and $x=\ln (t), y=e^{t}$. What is $\frac{d z}{d t}$ at the point $(x, y)=(0, e)$.

Answer:
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Name:
6. Evaluate the double integral

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} 3 \sqrt{1+x^{3}} d x d y
$$

Answer:
(a) 1
(b) $\frac{1}{3}$
(c) $\frac{52}{3}$
(d) $\frac{26}{3}$
(e) 4
7. Write down an iterated triple integral in CYLINDRICAL coordinates that computes the volume of the region inside both the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+(y-1)^{2}=1$. Do NOT carry out the actual integration.

Name:
8. Let \mathbf{F} be the vector field $\mathbf{F}=\langle 5 x y, 6 y z, 2 z\rangle$. Let C be the path obtained by the intersection of the surfaces $x=z^{2}$ and $y=z$. Find the work done by \mathbf{F} when traveling along C from ($0,0,0$) to $(1,1,1)$.

Answer:
(a) 15
(b) 5
(c) $\frac{13}{5}$
(d) $\frac{26}{5}$
(e) 4
9. Let \mathbf{F} be the vector field

$$
\mathbf{F}=\left\langle y^{2}+2 x e^{y}+1,2 x y+x^{2} e^{y}+2 y\right\rangle .
$$

Compute the work integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the path

$$
\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}, \quad 0 \leq t \leq \frac{\pi}{2}
$$

10. Let R be the region in the plane with vertices $(1,0),(2,1),(1,3),(0,2)$. Evaluate the integral

$$
\iint_{R}(y-x) e^{2 x+y} d A
$$

11. Compute the area of the region inside the cardioid $r=2+2 \cos \theta$.

Answer:
(a) 2π
(b) 8π
(c) 4π
(d) $2 \pi-4$
(e) 6π
12. Let S be the surface consisting of the portion of the plane $3 x+y+2 z=6$ in the first octant. Compute the flux of the vector field $\mathbf{F}=\langle 2 x, 4 z, y\rangle$ through S in the direction away from the origin.

Answer:
(a) 12
(b) 36
(c) 72
(d) 80
(e) 70
13. Let D be the region in 3 space given by $x^{2}+y^{2}+z^{2} \leq 1, x \geq 0, y \geq 0, z \geq 0$, and S the boundary of D.
If \mathbf{F} is the vector field $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$, compute the outward flux of \mathbf{F} through S.
Answer:
(a) $\frac{4}{3} \pi$
(b) $\frac{\pi}{3}$
(c) π
(d) $\frac{\pi}{10}$
(e) $\frac{\pi}{5}$
14. Let S be the part of the elliptic paraboloid $z=5-4 x^{2}-y^{2}$ lying above the plane $z=1$, oriented with normal vector pointing downward. Compute the flux of $\nabla \times \mathbf{F}$ across S, where \mathbf{F} is the vector field $\mathbf{F}=\left\langle-y z, x z^{2}, x y z\right\rangle$.
15. A ball is thrown at ground level and after 5 seconds lands 10 meters away. What was the initial speed? The gravitational constant is 10 meters per second squared.

Final Answers

1) 38
2) $\langle-1,2\rangle$
3) local max at $(0,0)$, local min at $(0,2)$ and saddle at $(1,1)$ and $(-1,1)$
4) \min of $e^{-1 / 4}$, and max of $e^{1 / 4}$
5) 1
6) $52 / 3$
7) $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \sin (\theta)} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r d z d r d \theta$
8) 5
9) 1
10) $\frac{1}{2}\left(e^{5}-e^{2}\right)$
11) 6π
12) 36
13) $\pi / 10$
14) -4π
15) $\sqrt{629}$
