Circle one:	Professor Krishnan
	Professor Shatz
	Professor Yip
	Professor Ziller
Name:	
Penn Id#:	
Signature:	
TA:	

FINAL EXAM

You need to show your work, even for multiple choice problems. A correct answer with no work will get you 0 points. If you see a shortcut, you need to explain it. Please circle the answer for each multiple choice problem, and for all other problems put a square around the final answer. Each problem is worth 10 points. You are NOT allowed to use a calculator or cell phone, or any other

problem is worth 10 points. You are NOT allowed to use a calculator or cell phone, or any other electronic device.

(Do not fill these in; they are for grading purposes only.)

Recitation Day and Time:

1)	9)
2)	10)
3)	11)
4)	12)
5)	13)
6)	14)
7)	15)
8)	

1

0

Math 114

1. A projectile is launched from the ground at an angle of $\frac{\pi}{4}$, and with an initial speed of $48\sqrt{2}$ feet/sec. How many seconds does it take a projectile to reach a height of 32 feet for the first time? Take the gravitational acceleration g to be 32 feet/sec².

Answer:

(a) 2 (b) 4 (c) 6 (d) 8 (e) 1 (f) 3

2. A curve C in 3-space is defined by

$$\mathbf{r}(t) = (4\cos t)\mathbf{i} + (4\sin t)\mathbf{j} + 3t\mathbf{k}.$$

Find the point p_0 on the curve C which has distance $\frac{5\pi}{4}$ from the point (4, 0, 0), as measured along the curve.

3. A surface is described implicitly by $\ln \frac{y}{z} = e^{xy}$. Find the partial derivative $\frac{\partial z}{\partial y}$ at the point (0,e,1).

Answer:

(b) 1/e (c) 3e (d) 3/e (e) e^2 (f) -8(a) *e*

4. Let $f(x,y) = x^2y + \ln(xy)$. Answer the following for the derivatives at the point (1,1):

a) What is the derivative in the direction of $\mathbf{i}-\mathbf{j}.$

b) Find a direction (one is sufficient) in which the derivative is equal to 3.

c) Is there a direction in which the derivative is equal to 4? Justify your claim.

Name:______ 6

5. Let $f(x,y) = x^4 + y^4 - 4xy + 1$. Find all critical points and determine wether they are local maximum, local minimum or saddle points.

6. The maximum of the function $f(x, y) = e^{xy}$ on the disc $x^2 + y^2 \le 1$ is equal to:

7. Evaluate the double integral

$$\int_0^4 \int_{\sqrt{y}}^2 \cos x^3 \, dx \, dy.$$

Answer:

(a) $\frac{1}{3}\sin(64)$ (b) $\sin(8)$ (c) $\cos(8) - 1$ (d) $\frac{1}{3}\sin(8)$ (e) $\frac{1}{3}\sin(2)$ (f) $\sin(2)$

8. A plate described by $1 \le x^2 + y^2 \le 9$ has mass density given by $\delta(x, y) = e^{x^2 + y^2}$. What is the total mass of the plate?

Answer:

(a) $\frac{1}{8}(e^9 - e)$ (b) $\pi(e^9 - 1)$ (c) $\pi(e^9 - e)$ (d) $\frac{1}{8}(e^3 - e)$ (e) $\frac{1}{8}(e^3 - 1)$ (f) $e^9 - e$

9. Compute the volume of the solid bounded by the cone $z = 3\sqrt{x^2 + y^2}$, the plane z = 0, and the cylinder $x^2 + (y - 1)^2 = 1$.

10. Evaluate the double integral

$$\iint_R \frac{e^{y+2x}}{y-x} \, dA$$

where R is the parallelogram with vertices (0, 2), (1, 3), (0, 5), (-1, 4).

11. Find the work done by the force field

 $\mathbf{F}(x,y) = e^{y}\sin(x)\mathbf{i} - (e^{y}\cos(x) - \sqrt{1+y})\mathbf{j}$

in moving a particle from $(-\pi, \pi^2)$ to (π, π^2) along the parabola $y = x^2$.

Answer:

(a) π (b) e^{π} (c) 1 (d) $-\pi$ (e) $\sqrt{1+\pi}$ (f) 0

12. Use Green's theorem to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F} = (e^{y^2} - 2y)\mathbf{i} + (2xye^{y^2} + \sin(y^2))\mathbf{j}$$

and C goes along a straight line from (0,0) to (1,2) and continues along a straight line to (3,0).

13. Find the flux $\iint_S \mathbf{F} \cdot \mathbf{n} \, \mathbf{d}\sigma$ of the vector field $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$ where the surface S is the sphere $x^2 + y^2 + z^2 = 1$ and \mathbf{n} is the outward pointing unit normal.

Answer:

(a) $\frac{4}{3}$ (b) $\frac{4\pi}{3}$ (c) π (d) $\frac{\sqrt{\pi}}{16}$ (e) $\frac{\pi}{16}$

14. Let C be the curve that is the intersection of the plane 2x+z = 1 and the cylinder $(x-1)^2+y^2 = 9$ oriented counter-clockwise as viewed from above. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F}(x, y, z) = 10z \,\mathbf{i} + \sin(y^2) \,\mathbf{j} + e^{z^2} \,\mathbf{k}.$$

Answer:

(a) $-\pi$ (b) $e^2 - \pi$ (c) 0 (d) π (e) $\sin(1)$

15. Find $|\mathbf{r}(1)|$ if $|\mathbf{r}(0)| = 0$ and $(\mathbf{r} \cdot \dot{\mathbf{r}})(t) = 6t^2$ for all t.

Answer:

(a) 0 (b) 4 (c) 6 (d) 27 (e) 54 (f) 2

Math 114

Fall 2013

1) (e) 2) $r(\frac{5\pi}{4}) = 2\sqrt{2}\mathbf{i} + 2\sqrt{2}\mathbf{j} + \frac{3\pi}{4}\mathbf{k}$ 3) (b) 4) (a) $\frac{1}{\sqrt{2}}$ (b) $\mathbf{v} = \mathbf{i}$ (c) No 5) (0,0) saddle point, (1,1) and (-1,-1) local minimum. 6) maximum is \sqrt{e} 7) (d) 8) (a) 9) $\frac{32}{3}$ 10) $\frac{1}{3}(e^5 - e^2) \ln \frac{5}{2}$ 11) (f) 12) -3 13)(b) 14) (c) 15) (f)