Circle one: Professor Krishnan
 Professor Shatz
 Professor Yip
 Professor Ziller

Name:
Penn Id\#: \qquad
Signature: \qquad
TA: \qquad
Recitation Day and Time: \qquad
You need to show your work, even for multiple choice problems. A correct answer with no work will get you 0 points. If you see a shortcut, you need to explain it. Please circle the answer for each multiple choice problem, and for all other problems put a square around the final answer. Each problem is worth 10 points. You are NOT allowed to use a calculator or cell phone, or any other electronic device.
(Do not fill these in; they are for grading purposes only.)
1)
9)
2)
10)
3)
11)
4)
12)
5)
13)
6)
14)
7)
15)
8)

1. A projectile is launched from the ground at an angle of $\frac{\pi}{4}$, and with an initial speed of $48 \sqrt{2}$ feet $/ \mathrm{sec}$. How many seconds does it take a projectile to reach a height of 32 feet for the first time? Take the gravitational acceleration g to be 32 feet $/ \mathrm{sec}^{2}$.

Answer:
(a) 2
(b) 4
(c) 6
(d) 8
(e) 1
(f) 3
2. A curve C in 3 -space is defined by

$$
\mathbf{r}(t)=(4 \cos t) \mathbf{i}+(4 \sin t) \mathbf{j}+3 t \mathbf{k}
$$

Find the point p_{0} on the curve C which has distance $\frac{5 \pi}{4}$ from the point $(4,0,0)$, as measured along the curve.

Name:
3. A surface is described implicitly by $\ln \frac{y}{z}=e^{x y}$. Find the partial derivative $\frac{\partial z}{\partial y}$ at the point $(0, e, 1)$.

Answer:
(a) e
(b) $1 / e$
(c) $3 e$
(d) $3 / e$
(e) e^{2}
(f) -8
4. Let $f(x, y)=x^{2} y+\ln (x y)$. Answer the following for the derivatives at the point $(1,1)$:
a) What is the derivative in the direction of $\mathbf{i}-\mathbf{j}$.
b) Find a direction (one is sufficient) in which the derivative is equal to 3 .
c) Is there a direction in which the derivative is equal to 4? Justify your claim.
5. Let $f(x, y)=x^{4}+y^{4}-4 x y+1$. Find all critical points and determine wether they are local maximum, local minimum or saddle points.

Name:
6. The maximum of the function $f(x, y)=e^{x y}$ on the disc $x^{2}+y^{2} \leq 1$ is equal to:

Math 114 FINAL EXAM
7. Evaluate the double integral

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} \cos x^{3} d x d y
$$

Answer:
(a) $\frac{1}{3} \sin (64)$
(b) $\sin (8)$
(c) $\cos (8)-1$
(d) $\frac{1}{3} \sin (8)$
(e) $\frac{1}{3} \sin (2)$
(f) $\sin (2)$

Name:
8. A plate described by $1 \leq x^{2}+y^{2} \leq 9$ has mass density given by $\delta(x, y)=e^{x^{2}+y^{2}}$. What is the total mass of the plate?

Answer:
(a) $\frac{1}{8}\left(e^{9}-e\right)$
(b) $\pi\left(e^{9}-1\right)$
(c) $\pi\left(e^{9}-e\right)$
(d) $\frac{1}{8}\left(e^{3}-e\right)$
(e) $\frac{1}{8}\left(e^{3}-1\right)$
(f) $e^{9}-e$
9. Compute the volume of the solid bounded by the cone $z=3 \sqrt{x^{2}+y^{2}}$, the plane $z=0$, and the cylinder $x^{2}+(y-1)^{2}=1$.
10. Evaluate the double integral

$$
\iint_{R} \frac{e^{y+2 x}}{y-x} d A
$$

where R is the parallelogram with vertices $(0,2),(1,3),(0,5),(-1,4)$.
11. Find the work done by the force field

$$
\mathbf{F}(x, y)=e^{y} \sin (x) \mathbf{i}-\left(e^{y} \cos (x)-\sqrt{1+y}\right) \mathbf{j}
$$

in moving a particle from $\left(-\pi, \pi^{2}\right)$ to $\left(\pi, \pi^{2}\right)$ along the parabola $y=x^{2}$.
Answer:
(a) π
(b) e^{π}
(c) 1
(d) $-\pi$
(e) $\sqrt{1+\pi}$
(f) 0
12. Use Green's theorem to evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where

$$
\mathbf{F}=\left(e^{y^{2}}-2 y\right) \mathbf{i}+\left(2 x y e^{y^{2}}+\sin \left(y^{2}\right)\right) \mathbf{j}
$$

and C goes along a straight line from $(0,0)$ to $(1,2)$ and continues along a straight line to $(3,0)$.
13. Find the flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathbf{d} \sigma$ of the vector field $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ where the surface S is the sphere $x^{2}+y^{2}+z^{2}=1$ and \mathbf{n} is the outward pointing unit normal.

Answer:
(a) $\frac{4}{3}$
(b) $\frac{4 \pi}{3}$
(c) π
(d) $\frac{\sqrt{\pi}}{16}$
(e) $\frac{\pi}{16}$
14. Let C be the curve that is the intersection of the plane $2 x+z=1$ and the cylinder $(x-1)^{2}+y^{2}=$ 9 oriented counter-clockwise as viewed from above. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where

$$
\mathbf{F}(x, y, z)=10 z \mathbf{i}+\sin \left(y^{2}\right) \mathbf{j}+e^{z^{2}} \mathbf{k}
$$

Answer:
(a) $-\pi$
(b) $e^{2}-\pi$
(c) 0
(d) π
(e) $\sin (1)$
15. Find $|\mathbf{r}(1)|$ if $|\mathbf{r}(0)|=0$ and $(\mathbf{r} \cdot \dot{\mathbf{r}})(t)=6 t^{2}$ for all t.

Answer:
(a) 0
(b) 4
(c) 6
(d) 27
(e) 54
(f) 2

1) (e)
2) $r\left(\frac{5 \pi}{4}\right)=2 \sqrt{2} \mathbf{i}+2 \sqrt{2} \mathbf{j}+\frac{3 \pi}{4} \mathbf{k}$
3) (b)
4) (a) $\frac{1}{\sqrt{2}} \quad$ (b) $\mathbf{v}=\mathbf{i} \quad$ (c) No
5) $(0,0)$ saddle point, $(1,1)$ and $(-1,-1)$ local minimum.
6) maximum is \sqrt{e}
7) (d)
8) (a)
9) $\frac{32}{3}$
10) $\frac{1}{3}\left(e^{5}-e^{2}\right) \ln \frac{5}{2}$
11) (f)
12) -3
13)(b)
13) (c)
14) (f)
