UNIVERSITY of **PENNSYLVANIA MATHEMATICS DEPARTMENT** Mathematics 114–Final Examination Spring 2005

Professor/Section	(check o	one):		
Crotty	001		Stovall	003
	601			004
Town TA.		Destation H.		
our IA:		Rectation #:		
Cour TA: True/False: Please write	the word true	or false (and any other inform	nation require	ed) in the s
rue/False: Please write	the word true		nation require	ed) in the s
rue/False: Please write	the <i>word</i> true		nation require	ed) in the s
True/False: Please write provided	the <i>word</i> true	or false (and any other inform	nation require	ed) in the s
rue/False: Please write	the <i>word</i> true	or false (and any other inform	nation require	ed) in the s
rue/False: Please write rovided	the <i>word</i> true	or false (and any other inform 6 7	nation require	ed) in the s

Multiple Choice: Write the letter corresponding to your answer in the space provided

1	8	
2	9	
3	10	
4	11	
5	12	
6	13	
7	14	

True/False questions

- 1. If C is a circle in the xy-plane and f(x, y) is not a constant when it is constrained to C, then there must be at least one point on C where ∇f is perpendicular to C.
- For questions 2-5, you are to determine if (0, 0) is a critical point of the given function. If (0, 0) IS a critical point, write TRUE on your answer sheet and indicate the type of critical point (min, max or saddle) as well.
- 2. $f(x, y) = \cos x \cos y$
- 3. $f(x, y) = \sin x \cos y$
- 4. $f(x, y) = 5x^4 + y^2$
- 5. $f(x,y) = -6x^2 + 3y^4$
- 6. If *f* is any two variable function, $\int_{R} f(x, y) dx dy = 2 \int_{S} f(x, y) dx dy$ where *R* is the rectangle $0 \le x \le 2$, $0 \le y \le 1$ and *S* is the square $0 \le x \le 1$, $0 \le y \le 1$.
- 7. The equations $x = \cos(t^3)$, $y = \sin(t^3)$ parameterize a circle.
- 8. When solving a first order ordinary differential equation, you find that $y_1 = 2x 4$ is a solution corresponding to the initial value y(2) = 0. Suppose you find a second solution, y_2 , corresponding to the initial point y(3) = 5. Is it possible for the solution y_2 to cross the line $y_1 = 2x 4$? (Answer TRUE if the second solution CAN cross the line; answer FALSE otherwise).
- 9. The solution of $\frac{dy}{dx} = x+1$ passing through (0, 1) has the same shape as the solution through (0, 0) except it is shifted up by 1 unit.
- 10. The differential equation $(y\cos x + 2xe^y) + (\sin x + x^2e^y + 2)\frac{dy}{dx} = 0$ is exact.

Multiple Guess:

1. The temperature throughout the first quadrant is given by $T(x, y) = \ln(xy) - x - y$. Determine the location of the hottest point in the first quadrant.

a) (0, 0) b) (1, 1) c) (∞, ∞) d) (2, 0) e) (0, 2) f) no hottest spot exists Answer: _____

Suppose y(x) is a solution to the differential equation $\frac{dy}{dx} = f(y)$ and further suppose that f(y) > 0 for all 2. y. Which of the following *could* be a graph of y(x)?

Answer:

3. Consider the differential equation $\frac{dy}{dx} = y(1-x-y)$. This equation has a constant solution (y = const.) if: a) y = 0 b) y = x c) x + y = 1 d) y = 1 e) there are no constant solutions Answer:

4. Consider the differential equation $\frac{dy}{dx} = y(1-x-y)$. The solutions (other than constant solutions, if any) of this equation will have critical points on a) the line y = x b) the curve $y^2 = -xy$ c) at $-\infty$ d) on the line x + y = 1e) no solution has a critical point

Answer:

Consider the differential equation y'' + 10y' + 25y = x. The homogeneous solution will include a 5. function of the form: f) xe^{-5x} a) ^{e-x}

c) 5x d) $5e^{x}$ e) e^{5x} b) $\sin 5x$ Answer: ____

6. Evaluate
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{0} \frac{4\sqrt{x^2 + y^2}}{1 + x^2 + y^2} dx dy$$
.
a) $2\pi \ln 2$ b) π c) 0 d) $4\pi - \pi^2$ e) $\frac{4-\pi}{4}$ f) $\frac{\pi - 1}{2}$

Answer:

Solve
$$y'' - 2y' - 2y = 0$$

a)
$$y = c_1 e^{2x} + c_2 e^{-2x}$$

c)
$$y = c_1 e^{\sqrt{3}x} + c_2 e^x$$

e)
$$y = (c_1 x + c_2) e^{1 - \sqrt{3}x}$$

b) $y = c_1 e^{1+\sqrt{3}x} + c_2 e^{1-\sqrt{3}x}$ d) $y = c_1 e^{2x} + c_2 e^{-\sqrt{3}x}$ f) $y = (c_1 x + c_2) e^x$

Answer:____

8.	One of the solutions to $y'' + \lambda^2 y = 0$ is						
	a) $\sin \lambda x$	b) $e^{\lambda x}$	c) λx	d) x^{λ}	e) λ^x	f) λ	

Answer: ____

9.	At what w	At what value of t does the curve $x = t^2 - t$, $y = t^2 + t$ have a horizontal tangent?						
	a) 2	b) 1	c) 1/2	d) 0	e) -1/2	f) –1	g) –2 Answer:	

10. If *R* is the region inside the circle $x^2 + y^2 = 1$, then $\iint_R \sqrt{x^2 + y^2} dA$ is equal to a) $\pi/6$ b) $\pi/4$ c) $\pi/3$ d) $\pi/2$ e) $2\pi/3$ f) $3\pi/4$ Answer: _____ 11. The general solution of the differential equation (4x - 5y) dx + (5x - y) dy = 0 is: a) $2x^2 - y^2 = C$ b) $2x^2 - y^2 + 10xy = C$ c) $(y - 2x)^7 = C(y + 2x)^3$ d) $4x^2y - 5xy - y^2 = C$ e) $(y - 2x)^3 = C(y + 2x)^7$ f) $(2y - x)^5 = C(2y + x)^3$ Answer:

12. Find the unit tangent vector to the curve $r(t) = e^{2t} \cos t \mathbf{i} + e^{2t} \sin t \mathbf{j} + e^{2t} \mathbf{k}$ at the point where $t = \pi/2$. a) <2/3, -2/3, 1/3> b) <2/3, -1/3, 2/3> c) <-1/3, 2/3, 2/3> d) <-1/3, -2/3, -2/3> e) <3/ $\sqrt{14}$, 2/ $\sqrt{14}$, -1/ $\sqrt{14}$ > f) <-3/ $\sqrt{14}$, -2/ $\sqrt{14}$, -1/ $\sqrt{14}$ > Answer: _____

- Shown are graphs of the solutions of three differential equations solved using the initial conditions 14. given.
 - (i) $y' \frac{1}{x}y = 2x 1, y(1) = 0$ -- 2 (ii) y'' + 2y' + y = x, y(0) = 0, y'(0) = -1 -- 3

 - (iii) $\frac{dy}{dx} 2xy = \sin x, y(0) = 0$ -- 1.

The solution graphs shown match the differential equations (i), (ii) and (iii) in the order:

(a) 1, 2, 3 (b) 1, 3, 2 (c) 2, 1, 3 (d) 2, 3, 1 (e) 3, 1, 2 (f) 3, 2, 1

Answer: ____

Free Response Questions:

Problems 1, 2 and 3 are *REQUIRED* of all students. You may do either 4. Or 5. For a total of 4 problems. If you do both 4 and 5, the better of the two scores will count.

1. Suppose the function P(t) satisfies the following differential equation:

P'(t) = P(t)(4 - P(t))

with the initial condition P(0)=1. Even without knowing a formula for P(t), we can deduce many of its properties. For instance,

P'(0) = P(0)(4 - P(0)) = 1(4 - 1) = 3

a) Find P''(t) in terms of P(t). Find P''(0)

b) For small t, which of the following is a possible graph for P(t)? Explain briefly.

c) Since P(0)=1, the function starts out less than 4. If P(t) reaches 4, that is, there is a time, t_0 , such that $P(t_0) = 4$, then $P'(t_0) = P(t_0)(4 - P(t_0)) = 4(4 - 4) = 0$. Would P(t) near $t = t_0$ look like either of the following graphs? *Briefly* explain *why* or *why not*.

d) Sketch a graph of P(t) showing a complete graph of P(t) for t > 0. Explain any critical points, points of inflection and the behavior of P as $t \to \infty$.

2. Solve y'' - y' + 2y = 0 subject to y(0) = 1, y'(0) = 1.

3. A zoo is designing a giant birdcage consisting of a cylinder of radius r feet and height h feet with a hemispherical top but no bottom (the cage will rest on the ground) (see diagram). The material for the hemisphere costs $20/\text{ft}^2$ and the material for the cylindrical part costs $10/\text{ft}^2$. The zoo has a budget of \$8000 for materials. Find the values of r and h giving the birds the maximum volume inside their cage assuming that the zoo spends all \$8000 in the budget.

4. Solve $y'' - 8y' + 16y = x^2$ subject to y(0) = 1, y'(0) = 0. You may use the method of your choice to solve for the non-homogeneous part (i.e., the particular solution).

5. Solve the homogeneous differential equation $y' = \frac{x+y}{x-y}$.