University of Pennsylvania Mathematics Department
 Mathematics 114-Final Examination Spring 2005

Your Name:

Professor/Section (check one):
Crotty 001口
Matthews 002 Stovall
003 \square $601 \square$ $004 \square$

Your TA: \qquad Rectation \#:
True/False: Please write the word true or false (and any other information required) in the space provided

1		6	
2		7	
3		8	
4		9	
5		10	

Multiple Choice: Write the letter corresponding to your answer in the space provided

1		8	
2		9	
3		10	
4		11	
5		12	
6		13	
7		14	

True/False questions

1. If C is a circle in the $x y$-plane and $f(x, y)$ is not a constant when it is constrained to C, then there must be at least one point on C where ∇f is perpendicular to C.

For questions $2-5$, you are to determine if $(0,0)$ is a critical point of the given function. If $(0,0)$ IS a critical point, write TRUE on your answer sheet and indicate the type of critical point (min, max or saddle) as well.
2. $f(x, y)=\cos x \cos y$
3. $f(x, y)=\sin x \cos y$
4. $f(x, y)=5 x^{4}+y^{2}$
5. $f(x, y)=-6 x^{2}+3 y^{4}$
6. If f is any two variable function, $\int_{R} f(x, y) d x d y=2 \int_{S} f(x, y) d x d y$ where R is the rectangle $0 \leq x \leq 2$, $0 \leq y \leq 1$ and S is the square $0 \leq x \leq 1,0 \leq y \leq 1$.
7. The equations $x=\cos \left(t^{3}\right), y=\sin \left(t^{3}\right)$ parameterize a circle.
8. When solving a first order ordinary differential equation, you find that $y_{I}=2 x-4$ is a solution corresponding to the initial value $\mathrm{y}(2)=0$. Suppose you find a second solution, y_{2}, corresponding to the initial point $y(3)=5$. Is it possible for the solution y_{2} to cross the line $y_{l}=2 x-4$? (Answer TRUE if the second solution CAN cross the line; answer FALSE otherwise).
9. The solution of $\frac{d y}{d x}=x+1$ passing through $(0,1)$ has the same shape as the solution through $(0,0)$ except it is shifted up by 1 unit.
10. The differential equation $\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}+2\right) \frac{d y}{d x}=0$ is exact.

Multiple Guess:

1. The temperature throughout the first quadrant is given by $T(x, y)=\ln (x y)-x-y$. Determine the location of the hottest point in the first quadrant.
a) $(0,0)$
b) $(1,1)$
c) (∞, ∞)
d) $(2,0)$
e) $(0,2)$
f) no hottest spot exists

Answer:
2. Suppose $y(x)$ is a solution to the differential equation $\frac{d y}{d x}=f(y)$ and further suppose that $f(y)>0$ for all
y. Which of the following could be a graph of $y(x)$?

 a)	 b)
 c)	 d)
 e)	 f)

Answer: \qquad
3. Consider the differential equation $\frac{d y}{d x}=y(1-x-y)$. This equation has a constant solution $(y=$ const.) if:
a) $y=0$
b) $y=x$
c) $x+y=1$
d) $y=1$
e) there are no constant solutions

Answer:
4. Consider the differential equation $\frac{d y}{d x}=y(1-x-y)$. The solutions (other than constant solutions, if any) of this equation will have critical points on
a) the line $y=x$
b) the curve y2 $=-x y$
c) at $-\infty$
d) on the line $x+y=1$
e) no solution has a critical point

Answer:
5. Consider the differential equation $y^{\prime \prime}+10 y^{\prime}+25 y=x$. The homogeneous solution will include a
function of the form:
a) ${ }^{e-x}$
b) $\sin 5 x$
c) $5 x$
d) $5 e^{x}$
e) $e^{5 x}$
f) $x e^{-5 x}$

Answer:
6. Evaluate $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{0} \frac{4 \sqrt{x^{2}+y^{2}}}{1+x^{2}+y^{2}} d x d y$.
a) $2 \pi \ln 2$
b) π
c) 0
d) $4 \pi-\pi^{2}$
e) $\frac{4-\pi}{4}$
f) $\frac{\pi-1}{2}$
7. Solve $y^{\prime \prime}-2 y^{\prime}-2 y=0$.
a) $y=c_{1} e^{2 x}+c_{2} e^{-2 x}$
b) $y=c_{1} e^{1+\sqrt{3} x}+c_{2} e^{1-\sqrt{3} x}$
c) $y=c_{1} e^{\sqrt{3} x}+c_{2} e^{x}$
d) $y=c_{1} e^{2 x}+c_{2} e^{-\sqrt{3} x}$
e) $y=\left(c_{1} x+c_{2}\right) e^{1-\sqrt{3} x}$
f) $y=\left(c_{1} x+c_{2}\right) e^{x}$
8. One of the solutions to $y^{\prime \prime}+\lambda^{2} y=0$ is
a) $\sin \lambda x$
b) $e^{2 x}$
c) λx
d) x^{λ}
e) λ^{x}
f) λ
9. At what value of t does the curve $x=t^{2}-t, y=t^{2}+t$ have a horizontal tangent?
a) 2
b) 1
c) $1 / 2$
d) 0
e) $-1 / 2$
f) -1
g) -2

Answer:
10. If R is the region inside the circle $x^{2}+y^{2}=1$, then $\iint_{R} \sqrt{x^{2}+y^{2}} d A$ is equal to
a) $\pi / 6$
b) $\pi / 4$
c) $\pi / 3$
d) $\pi / 2$
e) $2 \pi / 3$
f) $3 \pi / 4$

Answer:
11. The general solution of the differential equation $(4 x-5 y) d x+(5 x-y) d y=0$ is:
a) $2 x^{2}-y^{2}=C$
b) $2 x^{2}-y^{2}+10 x y=C$
c) $(y-2 \mathrm{x})^{7}=C(y+2 \mathrm{x})^{3}$
d) $4 x^{2} y-5 x y-y^{2}=C$ e) $(y-2 x)^{3}=C(y+2 x)^{7}$
f) $(2 \mathrm{y}-\mathrm{x}) 5=C(2 \mathrm{y}+\mathrm{x}) 3$

Answer:
12. Find the unit tangent vector to the curve $r(t)=e^{2 t} \cos t \mathbf{i}+e^{2 t} \sin t \mathbf{j}+e^{2 t} \mathbf{k}$ at the point where $t=\pi / 2$.
a) $<2 / 3,-2 / 3,1 / 3\rangle$
b) $\langle 2 / 3,-1 / 3,2 / 3\rangle$
c) $<-1 / 3,2 / 3,2 / 3>$
d) $\langle-1 / 3,-2 / 3,-2 / 3\rangle$
e) $<3 / \sqrt{14}, 2 / \sqrt{14},-1 / \sqrt{14}>$ f) $<-3 / \sqrt{14},-2 / \sqrt{14},-1 / \sqrt{14}>$ Answer:
14. Shown are graphs of the solutions of three differential equations solved using the initial conditions given.
(i) $\mathrm{y}^{\prime}-\frac{1}{\mathrm{x}} y=2 x-1, y(1)=0 \quad--2$
(ii) $y^{\prime \prime}+2 y^{\prime}+y=x, y(0)=0, y^{\prime}(0)=-1 \quad-3$
(iii) $\frac{d y}{d x}-2 x y=\sin x, y(0)=0 \quad-1$.

 1	 2
3.	180

The solution graphs shown match the differential equations (i), (ii) and (iii) in the order:
(a) 1, 2, 3
(b) 1, 3, 2
(c) 2, 1, 3
(d) 2, 3, 1
(e) $3,1,2$
(f) $3,2,1$
\qquad

Free Response Questions:
Problems 1, 2 and 3 are REQUIRED of all students. You may do either 4. Or 5. For a total of 4 problems. If you do both 4 and 5, the better of the two scores will count.

1. Suppose the function $P(t)$ satisfies the following differential equation:

$$
P^{\prime}(t)=P(t)(4-P(t))
$$

with the initial condition $P(0)=1$. Even without knowing a formula for $P(t)$, we can deduce many of its properties. For instance,

$$
P^{\prime}(0)=P(0)(4-P(0))=1(4-1)=3
$$

a) Find $P^{\prime \prime}(t)$ in terms of $P(t)$. Find $P^{\prime \prime}(0)$
b) For small t, which of the following is a possible graph for $P(t)$? Explain briefly.

c) Since $P(0)=1$, the function starts out less than 4 . If $P(t)$ reaches 4 , that is, there is a time, t_{0}, such that $P\left(t_{0}\right)=4$, then $P^{\prime}\left(t_{0}\right)=P\left(t_{0}\right)\left(4-P\left(t_{0}\right)\right)=4(4-4)=0$. Would $P(t)$ near $t=t_{0}$ look like either of the following graphs? Briefly explain why or why not.
1)

2)

d) Sketch a graph of $P(t)$ showing a complete graph of $P(t)$ for $t>0$. Explain any critical points, points of inflection and the behavior of P as $t \rightarrow \infty$.
2. Solve $y^{\prime \prime}-y^{\prime}+2 y=0$ subject to $y(0)=1, y^{\prime}(0)=1$.
3. A zoo is designing a giant birdcage consisting of a cylinder of radius r feet and height h feet with a hemispherical top but no bottom (the cage will rest on the ground) (see diagram). The material for the hemisphere costs $\$ 20 / \mathrm{ft}^{2}$ and the material for the cylindrical part costs $\$ 10 / \mathrm{ft}^{2}$. The zoo has a budget of $\$ 8000$ for materials. Find the values of r and h giving the birds the maximum volume inside their cage assuming that the zoo spends all $\$ 8000$ in the budget.
4. Solve $y^{\prime \prime}-8 y^{\prime}+16 y=x^{2}$ subject to $y(0)=1, y^{\prime}(0)=0$. You may use the method of your choice to solve for the non-homogeneous part (i.e., the particular solution).
5. Solve the homogeneous differential equation $y^{\prime}=\frac{x+y}{x-y}$.

