1. Find a unit vector orthogonal to both of the vectors $\langle 1,-1,0\rangle$ and $\langle 1,2,3\rangle$.
(a) $<\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}>$
(b) $<-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}>$
(c) $\left\langle\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
(d) $<\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}>$
(e) $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle$
(f) $\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle$
2. If $f(x, y)=x^{3} y+e^{x+3 y}$ compute $\frac{\partial^{2} f}{\partial x \partial y}$ at $x=1, y=0$.
(a) e
(b) 6
(c) $3+3 e$
(d) $6+e$
(e) $3+e$
(f) None of the above.
3. Let S be the surface $x^{2} y+4 x z^{3}-y z=0$. An equation for the tangent plane to S at $(1,2,-1)$ is
(a) $y+5 z=-3$
(b) $x-y+z=0$
(c) $2 x+y+5 z=0$
(d) $x-3 z=4$
(e) $2 x-3 y+z=3$
(f) $x+y+z=2$
4. If $f(x, y)=x^{4}-y^{2}-2 x^{2}+2 y-7$, find the critical points and classify them as a relative maximum, a relative minimum, a saddle point or no conclusion possible.
(a) $(0,1)$ relative maximum; $(-1,1)$ and $(1,1)$ saddle points
(b) $(0,1)$ relative minimum; $(1,1)$ relative minimum
(c) $(0,1)$ no conclusion; $(-1,1)$ relative maximum
(d) $(0,1)$ relative minimum; $(-1,1)$ and $(1,1)$ saddle points
(e) $(0,1)$ saddle point; $(-1,1)$ no conclusion
(f) $(0,1)$ saddle point; $(-1,1)$ and $(1,1)$ relative maxima
5. An ant is placed on a flat plate whose temperature distribution is given by $T(x, y)=3 x^{2}+2 x y$. If the ant's initial position is $(3,-6)$, it should walk in which direction to cool off most rapidly?
(a) $-3 i+6 j$
(b) $3 i-6 j$
(c) $-i-j$
(d) $4 i-3 j$
(e) $-i+12 j$
(f) $i+j$
6. Let $z=x-y$ and let $x=4\left(t^{3}-1\right), y=\ln t$. Find $\frac{d z}{d t}$ for $t=1$.
(a) 12
(b) 0
(c) $9 / 5$
(d) 11
(e) 7
(f) 2
7. If y is the solution of the initial value problem $y^{\prime}+2 x y=x$ subject to $y(0)=1 / 2$, what is $y(1)$?.
(a) $\frac{1}{2}+1 / e$
(b) $\frac{1}{2}$
(c) $\frac{1}{2}-1 / e$
(d) $1 / e$
(e) $\frac{1}{2}+2 / e$
(f) $-\frac{1}{2}$
8. Solve the initial value problem $y^{\prime \prime}+10 y^{\prime}+29 y=0, y(0)=0, y^{\prime}(0)=10$. Then $y\left(\frac{\pi}{2}\right)=$
(a) $5 e^{-5}$
(b) $5 e^{-5 \pi / 2}$
(c) $5 e^{-5} \pi$
(d) $5 e^{-5} \frac{\pi}{2}$
(e) 0
(f) None of the above
9. Let $A=(2,1,3), B=(1,2,-2)$ and $C=(-1,3,1)$. Then the plane through A, B and C intersects the z-axis at:
(a) 3
(b) 13
(c) 8
(d) 32
(e) 0
(f) None of the above
10. The area of the surface formed by revolving the portion of the curve $x^{2}+y^{2}=1$ in the first quadrant about the y-axis, is equal to:
(a) 2π
(b) π
(c) $2 \pi^{2}$
(d) $4 \pi^{2}$
(e) 4π
(f) None of the above
11. How far does a bug travel from time $t=1$ to time $t=2$ if at time t it is at the point $\left(t^{2}, t^{3}\right)$.
12. Find the area inside the circle $r=1$ but outside the figure eight $r^{2}=\cos (2 \theta)$.
13. The planes $5 x+3 y+2 z=0$ and $2 x+8 y-5 z=0$ intersect in a line. Give an equation for this line.
14. Find the linearization of $f(x, y)=e^{y x^{2}}$ at $(1,1)$.
15. Evaluate the double integral $\iint_{R} e^{-x^{2}-y^{2}} d A$ where R is the region in the first quadrant bounded by the circle $x^{2}+y^{2}=1$ and the coordinate axes.
16. Compute the triple integral $\iiint_{R_{2}} z d V$ where R be the solid region inside both the sphere $x^{2}+y^{2}+$ $z^{2}=1$ and the cone $z^{2}=x^{2}+y^{2}$.
17. Compute the volume underneath the graph of $e^{y^{2}}$ and over the triangle with vertices $(0,0),(0,1)$ and $(2,1)$.
18. Find all fourth roots of -1 .
19. Solve $y^{\prime \prime}+y=\sin (2 x)$ with $y(0)=1, y^{\prime}(0)=1 / 3$.
20. Solve $\left(y^{3}-y^{2} \sin x-x\right) d x+\left(3 x y^{2}+2 y \cos x\right) d y=0$
