MATH 114

Final Exam

Problem 1. Assume the acceleration of gravity is $10^{\text{metrs}/\text{sec}^2}$ downwards. A ball is hit with a horizontal velocity of $20^{\text{meters}/\text{sec}}$ and a vertical upward velocity of $25^{\text{meters}/\text{sec}}$. If the ball is initially 1 meterabove ground when it is hit, how high a fence will the ball clear if the fence is 80 metersaway from where the ball is hit?

Answer (in meters):

a) 1 b) 6 c) 11 d) 16 e) 21 f) 26 g) 31 h) 36

Problem 2. If

$$\frac{dy}{dt} = k(3-y)$$

where k is a constant and y(0) = 0 and y(1) = 1, what is y(2)?

Answer:

a) -1 b) $-\frac{1}{3}$ c) 0 d) $\frac{1}{2}$ e) $\frac{3}{5}$ f) 1 g) $\frac{5}{3}$ h) $\frac{10}{3}$

Problem 3. Find the z-coordinate of the point on the surface $2z = 10 - 4x^2 - 6y^2$ where the tangent plane is parallel to the plane 4x + 12y + 2z = 0.

Answer:

a) -2 b) -1 c) 0 d) $\frac{1}{2}$ e) 1 f) $\frac{3}{2}$ g) 2 h) $\frac{5}{2}$

Problem 4. The velocity v of a particle moving along the x-axis (so $v = \frac{dx}{dt}$) satisfies the differential equation

$$\frac{dv}{dt} = -\frac{v}{4}.$$

What is the position of the particle at time t = 4 seconds, if you know that the initial postion x(0) = 0, and the initial velocity $v(0) = \frac{dx}{dt}(0) = 5$ feet/sec.

Answer (in feet):
a)
$$\frac{10}{e}$$
 b) $10 - \frac{5}{e}$ c) $12 + \frac{2}{e}$ d) $20 - \frac{20}{e}$ e) 24 f) $15 - \frac{15}{e}$ g) 40 h) $20 + \frac{2}{e}$

Problem 5. Find the distance from the ellipsoid $x^2 + y^2 + 4z^2 = 4$ to the plane x + y + z = 6.

(Hint: Write down the distance from a point to the plane, and minimize it as the point varies on the ellipsoid.)

Answer:

a) 0 b)
$$\frac{1}{\sqrt{6}}$$
 c) $\frac{1}{\sqrt{2}}$ d) $\frac{2}{3}$ e) 1 f) $\sqrt{3}$ g) 2 h) $\sqrt{6}$

Problem 6. Compute the double integral

$$\iint_R \frac{3x-y}{3x+y} \, dA,$$

where R is the region inside the triangle with vertices (0,0), (1,3) and (2,0).

Answer:
(a)
$$\frac{3}{2}$$
 b) $\frac{5}{4}$ c) 1 d) $\frac{5}{4}$ e) $\frac{2}{3}$ f) $\frac{1}{2}$ g) $\frac{1}{3}$ h) 0

Problem 7. Compute the double integral

$$\int_0^4 \int_{1-\frac{y}{4}}^1 \cos(x^2) \, dx \, dy.$$

Answer:

a)
$$3\pi$$
 b) $3\cos(1)$ c) $\sin(2)$ d) $2\sin(1)$ e) $\pi - 1$ f) $2 - \sin(1)$ g) 4 h) 0

Problem 8. Find the sum of the maximum and minimum of the curvature of the ellipse

$$9(x-1)^2 + y^2 = 9.$$

(*Hint.* The ellipse can be parametrised (x(t), y(t)) with $x(t) = 1 + \cos(t)$. Find y(t) and sketch the ellipse to find where the curvature is greatest and least.)

Answer:

a) 0 b) 1 c) 3 d) 9 e)
$$\frac{10}{9}$$
 f) $\frac{4}{3}$ g) $\frac{28}{9}$ h) $\frac{28}{3}$

Problem 9. Compute the triple integral

$$\iiint_R z \, dV,$$

where R is the region inside the sphere of radius 2 centered at the origin in the first octant. (So $R = \{ (x, y, z) | x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0, z \ge 0 \}.$

Answer:
a)
$$\pi$$
 b) $2\pi(1-\frac{1}{\sqrt{2}})$ c) 3 d) $2\sqrt{2}$ e) 3π f) 7π g) $\frac{11\pi}{4}$ h) 10π

Problem 10. What is $\oint_C x dy - y dx$, where *C* is the curve composed of a straight line segment from (-2, 0) to (0, 0), a straight line segment from (0, 0) to (0, -2), and the part of the circle of radius 2, centered at the origin, traversed counterclockwise starting from (0, -2) and ending at (-2, 0)

Answer:

a)
$$-1$$
 b) $-\pi$ c) 0 d) 2π e) 3π f) 6π g) $\frac{9\pi}{4}$ h) 9π

Problem 11. Let f be the function $f(x, y) = x^2 - 2x + 2y^2$. Find the sum of the maximum and the minimum of f inside the region $x^2 + y^2 \le 4$.

Answer:

a) -2 b) -1 c) 0 d) 1 e) 4 f) 8 g) 12 h) 20

Problem 12. What is the limit

$$\lim_{(x,y)\to(0,0)}\frac{(x^2+y^2)\sin(x^2+y^2)}{x^4+y^4}.$$

Answer:

a) 2 b) 1 c) 3 d) 0 e) Does not exist f) 6 g) $\frac{9}{4}$ h) 9

Problem 13. The maximal volume of a parallelipiped whose sides a, b, c satisfy $ab+4ac+9bc \le 432$ is:

Problem 14. The function $h(x, y) = 2x \sin(y) + y^2 - x^2$ has exactly:

Answer:

- a) one local maximum, one local minimum, and no saddle points
- b) two local maxima
- c) two local minima
- d) one saddle point and one local minimum

e) one saddle point

- f) one saddle point and one local maximum
- g) one local minimum
- h) one local maximum

Problem 15.

i) For what values of n = 1, 2, ..., is the vector field

$$\vec{F} = \frac{x}{(x^2 + y^2)^n} \vec{i} + \frac{y}{(x^2 + y^2)^n} \vec{j}$$

conservative?

ii) For what values of n = 1, 2, ..., is the vector field

$$\vec{F} = \frac{x}{(x^2 + y^2)^n} \vec{i} - \frac{y}{(x^2 + y^2)^n} \vec{j}$$

conservative?

Proof. i) For all values of n: If $n \neq 1$, then $\vec{F} = \nabla \left(\frac{1}{2(1-n)} (x^2 + y^2)^{1-n} \right)$, and similarly for n = 1, with potential function $\frac{1}{2}\ln(x^2 + y^2)$ Note that since the domain is not simply connected it is not enough to check closedness.

ii) For no values of n: If \vec{F} where conservative for some n, then because of i) so would be the sum, that is $\frac{2x}{(x^2+y^2)^n}\vec{i}$ would be conservative, which is obviously false.

Problem 16. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.

i The function
$$g(x,y) = \begin{cases} \frac{x^3 + y^3}{x + y} & \text{if } x \neq -y \\ 0 & \text{if } x = -y \end{cases}$$
 is continuous.

The curvature of the curve $\langle 4t, \cos(2t), \sin(2t) \rangle$ is constant. ii

iii Let
$$\vec{F}(x,y) = -2e^{2x+y}\vec{i} + e^{2x+y}\vec{j}$$
. The line integral $\oint_C \vec{F} \cdot d\vec{r}$ along any simple closed positively (counterclockwise) oriented loop is negative.

There is a solution of the differential equation $\frac{dy}{dt} = \sin(y)$ whose graph is a line. iv

Answer:

i	FALSE
ii	TRUE
iii	FALSE
iv	TRUE