Math 114, FINAL EXAM December 21, 2009

Part I: Multiple choice questions

1. 10 points Find the angle between the $x y$-plane and the tangent plane to the ellipsoid

$$
\frac{x^{2}}{12}+\frac{y^{2}}{12}+\frac{z^{2}}{3}=1
$$

at the point $(2,2,1)$.
(A) $\frac{\pi}{3}$
(B) $\arccos \left(\sqrt{\frac{2}{3}}\right)$
(C) $\frac{\pi}{2}$
(D) $\arccos \left(\sqrt{\frac{11}{12}}\right)$
(E) $\frac{\pi}{6}$
(F) $\arccos \left(\sqrt{\frac{1}{27}}\right)$
2. 10 points Find the distance from the origin to the plane passing through the point $(1,0,1)$ and containing the line $\langle t, 1,5-t\rangle$.
(A) 2
(B) $\frac{2}{\sqrt{11}}$
(C) $\sqrt{2}$
(D) $2 \sqrt{2}$
(E) $\frac{2}{3}$
(F) none of the above
3. 10 points A news helicopter is descending along the helix $\langle\sin (\pi t), \cos (\pi t), 10-t\rangle$. At time $t=5$ the crew turns on a powerful head light shining straight ahead in the direction of the velocity vector. What spot on the ground, i.e. what point on the $x y$-plane, does this beam of light hit?
(A) $(-\pi, 0)$
(B) $(0,-1)$
(C) $(0,0)$
(D) $(-5 \pi,-1)$
(E) $(\pi, 5)$
(F) none of the above
4. 10 points Let M be the absolute maximum of $f(x, y, z)=x y z$ in the sphere $x^{2}+y^{2}+z^{2} \leq 3$ and let m be the absolute minimum. What is $M+m$?
(A) 1
(B) -1
(C) 0
(D) 2
(E) -2
(F) none of the above
5. 10 points Find the mass of the sphere of radius a if its density at any point is proportional to the distance to the center of the sphere with proportionality coefficient k.
(A) $4 \pi k a$
(B) $\frac{k a^{3}}{27}$
(C) $\pi k a^{4}$
(D) $2 \pi k a^{3}$
(E) $1+2 \pi k a^{4}$
(F) none of the above
6. 10 points Suppose $z=f(x, y)$, where $x=g(s, t), y=h(s, t)$. Suppose that we know that

$$
\begin{aligned}
g(1,2) & =3, & g_{s}(1,2)=-1, & g_{t}(1,2)=4, \\
h(1,2) & =6, & h_{s}(1,2)=-5, & h_{t}(1,2)=10, \\
f_{x}(3,6) & =7, & f_{y}(3,6)=8 . &
\end{aligned}
$$

Find $\frac{\partial z}{\partial s}+\frac{\partial z}{\partial t}$ when $s=1$ and $t=2$.
(A) 60
(B) -60
(C) 61
(D) -61
(E) 62
(F) -62
7. 10 points A kid is riding a roller coaster in an amusement park. Part of the track follows the curve

$$
\vec{r}(t)=\left\langle t, t^{2}, \frac{2}{3} t^{3}\right\rangle, \quad 0 \leq t \leq 2
$$

How long is this part of the coaster track?
(A) $\frac{22}{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) 1
(D) $\frac{5}{3}$
(E) 8
(F) none of the above
8. 10 points Evaluate

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y
$$

(A) $\frac{1}{4}(e-1)$
(B) $\frac{1}{2}\left(1-\frac{1}{e}\right)$
(C) -1
(D) $\frac{5}{3}$
(E) $-\frac{2}{e}$
(F) none of the above
9. 10 points The force field

$$
\vec{F}=\left\langle 2 x y, x^{2}+y\right\rangle
$$

acts on an object moving along the path

$$
\vec{r}(t)=\left\langle t^{2} e^{(t-2)^{3}}, \frac{t}{\sqrt{t+2}}\right\rangle, \quad 0 \leq t \leq 2 .
$$

Find the work done by \vec{F}.
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{33}{2}$
(E) $\frac{2}{9}$
(F) none of the above

Part II: Open answer questions

10. 10 points Solve the initial value problem

$$
x y^{\prime}-2 y=x^{2}, \quad y(-1)=0
$$

11. 10 points $L e t$ be the region in the plane bounded by the square with vertices $(0,1),(1,2),(2,1)$, and $(1,0)$. Evaluate the integral

$$
\iint_{R}(x+y)^{2} \sin (x-y) d A
$$

12. 10 points True or false. Give a reason or a counterexample
(a) If \vec{a} is a non-zero vector in three space, then $\operatorname{proj}_{\vec{a} \times \vec{k}}(\vec{a})=\overrightarrow{0}$.
(b) The vector $(\widehat{\mathbf{j}} \times(\widehat{\mathbf{k}} \times \widehat{\mathbf{j}})) \times \widehat{\mathbf{1}}$ is a unit vector.
(c) If \vec{a} and \vec{b} are perpendicular non-zero vectors, then $3 \vec{a}+2 \vec{b}$ and $-3 \vec{a}+2 \vec{b}$ have the same length.
13. 10 points Let C be the positively oriented boundary of the region D in the upper half plane that lies between the circle centered at the origin of radius 1 and the circle centered
at the origin of radius 3. Evaluate the integral

$$
\int_{C}\left(\arctan \left(x^{2}\right)+y^{2}\right) d x+\left(e^{y^{2}}-x^{2}\right) d y
$$

Answer Key:

1. (B)
2. (B)
3. (D)
4. (C)
5. (C)
6. (C)
7. (A)
8. (A)
9. (D)
10. $x^{2} \ln (|x|)$
11. 0
12. (a) is true, (b) is true, (c) is true
13. $-104 / 3$
