Problems for Final Exam Multiple Choice

1. The volume of the region cut from the solid upper hemisphere $\rho \leq 2, \ z \geq 0$ by the cone $\phi = \pi/6, \ z \geq 0$ is

(a) 1
(b) 2
(c)
$$\pi/2$$

(d) $\pi/3$
(e) $\frac{16\pi}{3}(1-\frac{\sqrt{3}}{2})$
(f) $\frac{8\pi}{6}\sqrt{3}$
(g) $1-\frac{\sqrt{2}}{3}$
(h) $2-\frac{\sqrt{2}}{3}$

Answer: (e)

2A. The principal unit normal **N** for the curve

$$r(t) = (2t+3)\mathbf{i} + (t^2-1)\mathbf{j}$$

at t = 1 is

(a) $i/\sqrt{2} + j/\sqrt{2}$ (b) $i/\sqrt{2} - j/\sqrt{2}$ (c) $-i/\sqrt{2} - j/\sqrt{2}$ (d) $-i/\sqrt{2} + j\sqrt{2}$ (e) -i(f) i(g) -j(h) j

Answer: (c)

2B. A shell is fired out over the water from the top of a 160-ft. high cliff on the shoreline, at an angle of 30° with the horizontal, at an initial velocity of 320 ft./sec. Ignoring all forces except for gravity, when will

it hit the water?

- (a) after $5 + \sqrt{35}$ seconds (b) after $6 + \sqrt{35}$ seconds
- (c) after $5 + \sqrt{45}$ seconds
- (d) after $6 + \sqrt{45}$ seconds
- (e) after $5 + \sqrt{55}$ seconds (f) after $6 + \sqrt{55}$ seconds
- (g) after $5 + \sqrt{65}$ seconds (h) after $6 + \sqrt{65}$ seconds
- **3**. The length of the curve

$$r(t) = \cos^3 t \mathbf{j} + \sin^3 t \mathbf{k}, \quad 0 \le t \le \pi/2$$

is

(a) 1/2
(b) 3/4
(c) 1
(d) 5/4
(e) 3/2
(f) 7/4
(g) 2
(h) 9/4

Answer: (e)

4. The area in the first quadrant between the polar curves $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$ is

(a) $\pi/4$ (b) 1 (c) 3/2(d) $\pi/2$ (e) 7/4(f) 2 (g) $3\pi/4$ (h) 5/2

Answer: (f)

5. In the Maclaurin series solution to the differential equation

$$y'' - xy = 0, \quad y(0) = 0, \ y'(0) = 1,$$

the coefficient of x^4 is

(a)	1	(b)	1/2
(c)	1/3	(d)	1/4
(e)	1/6	(f)	1/12
(g)	1/24	(h)	1/48

Answer: (f)

6. Let $f(x,y) = \sqrt{xy}$. Using differentials, a good approximation to f(2.01, 1.98) is

(a)	1.98	(b)	1.985
(c)	1.99	(d)	1.995
(e)	2	(f)	2.005
(g)	2.01	(h)	2.015

Answer: (d)

Free Response

- **1**. Find all fourth roots of $-1 + \sqrt{3}i$.
- 2. Find the general solution to

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 6\sin(2x).$$

3. Find the closest point to the origin which is on the intersection of the two planes

$$x + 2y + 3z = 6 \quad \text{and} \\ x + 3y + 9z = 9.$$