Problems for Final Exam Multiple Choice

1. The volume of the region cut from the solid upper hemisphere $\rho \leq 2, z \geq 0$ by the cone $\phi=\pi / 6, z \geq 0$ is
(a) 1
(b) 2
(c) $\pi / 2$
(d) $\pi / 3$
(e) $\frac{16 \pi}{3}\left(1-\frac{\sqrt{3}}{2}\right)$
(f) $\frac{8 \pi}{6} \sqrt{3}$
(g) $1-\frac{\sqrt{2}}{3}$
(h) $2-\frac{\sqrt{2}}{3}$

Answer: (e)
$\mathbf{2 A}$. The principal unit normal \mathbf{N} for the curve

$$
r(t)=(2 t+3) \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}
$$

at $t=1$ is
(a) $\mathbf{i} / \sqrt{2}+\mathbf{j} / \sqrt{2}$
(b) $\mathbf{i} / \sqrt{2}-\mathbf{j} / \sqrt{2}$
(c) $-\mathbf{i} / \sqrt{2}-\mathbf{j} / \sqrt{2}$
(d) $-\mathbf{i} / \sqrt{2}+\mathbf{j} \sqrt{2}$
(e) $\mathbf{- i}$
(f) i
(g) $-\mathbf{j}$
(h) \mathbf{j}

Answer: (c)
2B. A shell is fired out over the water from the top of a $160-\mathrm{ft}$. high cliff on the shoreline, at an angle of 30° with the horizontal, at an initial velocity of $320 \mathrm{ft} . / \mathrm{sec}$. Ignoring all forces except for gravity, when will
it hit the water?
(a) after $5+\sqrt{35}$ seconds
(b) after $6+\sqrt{35}$ seconds
(c) after $5+\sqrt{45}$ seconds
(d) after $6+\sqrt{45}$ seconds
(e) after $5+\sqrt{55}$ seconds
(f) after $6+\sqrt{55}$ seconds
(g) after $5+\sqrt{65}$ seconds
(h) after $6+\sqrt{65}$ seconds
3. The length of the curve

$$
r(t)=\cos ^{3} t \mathbf{j}+\sin ^{3} t \mathbf{k}, \quad 0 \leq t \leq \pi / 2
$$

is
(a) $1 / 2$
(b) $3 / 4$
(c) 1
(d) $5 / 4$
(e) $3 / 2$
(f) $7 / 4$
(g) 2
(h) $9 / 4$

Answer: (e)
4. The area in the first quadrant between the polar curves $r=1+\cos \theta$ and $r=1-\cos \theta$ is
(a) $\pi / 4$
(b) 1
(c) $3 / 2$
(d) $\pi / 2$
(e) $7 / 4$
(f) 2
(g) $3 \pi / 4$
(h) $5 / 2$

Answer: (f)
5. In the Maclaurin series solution to the differential equation

$$
y^{\prime \prime}-x y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

the coefficient of x^{4} is
(a) 1
(b) $1 / 2$
(c) $1 / 3$
(d) $1 / 4$
(e) $1 / 6$
(f) $1 / 12$
(g) $1 / 24$
(h) $1 / 48$

Answer: (f)
6. Let $f(x, y)=\sqrt{x y}$. Using differentials, a good approximation to $f(2.01,1.98)$ is
(a) 1.98
(b) 1.985
(c) 1.99
(d) 1.995
(e) 2
(f) 2.005
(g) 2.01
(h) 2.015

Answer: (d)

Free Response

1. Find all fourth roots of $-1+\sqrt{3} i$.
2. Find the general solution to

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=6 \sin (2 x)
$$

3. Find the closest point to the origin which is on the intersection of the two planes

$$
\begin{aligned}
& x+2 y+3 z=6 \quad \text { and } \\
& x+3 y+9 z=9 .
\end{aligned}
$$

