MATH 104 - Sample Final Exam 1

1. A scientist collects data that relate two variables, x and y. Instead of plotting y as a function of x, she plots $\log _{10} y$ as a function of $\log _{10} x$, and gets a line whose slope is 3 and whose intercept on the vertical axis is 2 . What equation describes y as a function of x ?
(a) $y=3 x+2$
(b) $y=3 x+100$
(c) $y=100 e^{3 x}$
(d) $y=2 x^{3}$
(e) $y=100 x^{3}$
2. What is the volume of the solid generated by rotating the region bounded by the x-axis, the curve $y=\ln x$ and the line $x=e$ around the y-axis?
(a) $\pi e-2 \pi$
(b) $\frac{\pi\left(e^{2}-1\right)}{2}$
(c) $\ln (\pi)-\frac{1}{2}$
(d) $\frac{\pi\left(e^{2}+1\right)}{2}$
(e) $\ln 2-\ln \pi$
3. $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{3 n}=$
(a) 1
(b) e
(c) e^{5}
(d) e^{6}
(e) ∞
4. $\int_{0}^{\pi} \cos ^{4} x d x=$
(a) 2
(b) π
(c) $\pi-\frac{1}{2}$
(d) $\sqrt{2} \pi$
(e) $3 \pi / 8$
5. $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x=$
(a) $1 / 4$
(b) $2 / 15$
(c) $\sqrt{3 / 2}$
(d) $\pi / 6$
(e) 1
6. Consider the two infinite series: (I) $\sum_{n=2}^{\infty} \frac{(-1)^{n} \sin (3 n)}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+2}$
(a) Both converge absolutely
(b) Both converge conditionally
(c) Both diverge
(d) I converges absolutely and II diverges
(e) I converges absolutely and II converges conditionally
7. Evaluate $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1-x^{2}}{x \sin x-x^{2}}$. (Hint: Use Taylor series.)
(a) 0
(b) 3
(c) $-1 / 3$
(d) -3
(e) does not exist
8. Which of the following is the Maclaurin series for $\int_{0}^{x} \frac{\sin t-t}{t^{3}} d t$?
(a) $-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
(b) $-\frac{x^{3}}{3 \cdot 5!}+\frac{x^{5}}{5 \cdot 7!}-\frac{x^{7}}{7 \cdot 9!}+\cdots$
(c) $-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
(d) $-\frac{x}{3!}+\frac{x^{3}}{3 \cdot 5!}-\frac{x^{5}}{5 \cdot 7!}+\cdots$
(e) $-\frac{x^{2}}{2 \cdot 3!}+\frac{x^{4}}{4 \cdot 5!}-\frac{x^{5}}{5 \cdot 6!}+\cdots$
9. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n(-3)^{n}}$ is:
(a) $-5<x \leq 1$
(b) $-5 \leq x<1$ (c) $-3 \leq x \leq 3$
(d) $-1<x \leq 5$
(e) $-1 \leq x \leq 5$
10. Bill, Gwen, Sue and Zach use the approximation $e^{x} \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ with $x=$ 0.2 to compute $e^{0.2}$. They make the following assertions about the error E :

Bill: $|E|<0.0004$,
Gwen: $|E|<0.0003$
Sue: $|E|<0.0002$,
Zach: $|E|<0.00001$
Which of them are correct? (Note: $1<e<3$)
(a) only Bill
(b) only Bill and Gwen
(c) only Bill, Gwen and Sue
(d) all of them
(e) none of them
11. Let $y(x)$ be the solution of $\frac{d y}{d x}-2 y=6$ such that $y(0)=1$. Then $y(1)$ is:
(a) $\left(3-e^{2}\right) / 2$
(b) $e^{-2}-3$
(c) $e^{2}+3$
(d) $4 e^{2}-3$
(e) $-2 e^{2}-3$
12. A thermometer is taken from a room where the temperature is $20^{\circ} \mathrm{C}$ to the outdoors where the temperature is $5^{\circ} \mathrm{C}$. After one minute, the thermometer read 12° C. After how many minutes (after being taken outdoors) will the thermometer read $6^{\circ} \mathrm{C}$?
(a) $\ln 15$
(b) $\ln 7 / \ln 15$
(c) $\ln 15 / \ln 7$
(d) $\ln 15 /(\ln 15-\ln 7)$
(e) $\ln 7 /(\ln 15-\ln 7)$
13. $\int_{0}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x=$
(a) 0
(b) π
(c) $\pi / 2$
(d) $e / 2$
(e) diverges
14. A couple plans to invest money at a constant rate of c dollars per year for $T=20$ years. The interest rate of their investment is 5% per year, compounded continuously. What value of c will make the value of their investment equal to $\$ 20,000$ at $T=20$ years?
(a) $20,000 /(e-1)$
(b) $1,000 /(e-1)$
(c) $1,000 \cdot \ln 2$
(d) $20,000 / \ln (20)$
(e) $20,000 e^{-1}$
15. Let $f(x)=\frac{1}{1-e^{x}}$. Which of the following is true?
(i) The graph of f has a horizontal asymptote at $y=1$.
(ii) The graph of f has a vertical asymptote at $x=1$.
(iii) f is decreasing for $x>0$.
(iv) f is concave upward for $x<0$.
(a) (i) and (ii)
(b) only (i)
(c) (iii) and (iv)
(d) (i) and (iv)
(e) (i), (ii), (iii), and (iv)
16. Until recently, hamburgers at a certain sports arena sold for $\$ 4$ each. The food concession sold an average of 8,000 hamburgers on a game night. When the price was raised to $\$ 4.25$, hamburger sales dropped to an average of 7,000 per night. Meanwhile, the concession's fixed costs are $\$ 2,000$ per night and the variable costs are $\$ 1$ per hamburger. Assuming the demand curve is linear, find the price of a hamburger that will maximize the average nightly hamburger profit.
(a) $\$ 3.00$
(b) $\$ 3.50$
(c) $\$ 3.75$
(d) $\$ 4.50$
(e) $\$ 5.00$
17. Evaluate $\int_{0}^{1} x \ln x d x$.
(a) $-1 / 4$
(b) $-1 / 2$
(c) 0
(d) $1 / 4$
(e) $1 / 2$
18. Recall that the distance from a point (x, y, z) in three-dimensional space to the origin is $D=\sqrt{x^{2}+y^{2}+z^{2}}$. Compute the shortest distance from the origin to a point on the surface $z=\frac{1}{x y}$.
(a) 3
(b) $\sqrt{3}$
(c) $\sqrt{2+\sqrt{2}}$
(d) $2+2 \sqrt{2}$
(e) There is no closest point.
19. The radius of a right circular cylinder is measured with an error of at most 3%, and the height is measured with an error of at most 2%. Using differentials, approximate the maximum percentage error in the volume of the cylinder as calculated from these measurements.
(a) 5%
(b) 7%
(c) 8%
(d) 10%
(e) 12%
20. The coefficient of $(x-1)^{4}$ in the Taylor series centered at $c=1$ for the function $\ln x$ is
(a) $-1 / 4$!
(b) $1 / 3$
(c) 6
(d) $1 / 4$
(e) $-1 / 4$

