MATH 104 – Sample Final Exam 1

1. A scientist collects data that relate two variables, x and y. Instead of plotting y as a function of x, she plots $\log_{10} y$ as a function of $\log_{10} x$, and gets a line whose slope is 3 and whose intercept on the vertical axis is 2. What equation describes y as a function of x?

(a) y = 3x + 2 (b) y = 3x + 100 (c) $y = 100e^{3x}$ (d) $y = 2x^3$ (e) $y = 100x^3$

2. What is the volume of the solid generated by rotating the region bounded by the x-axis, the curve $y = \ln x$ and the line x = e around the y-axis?

(a)
$$\pi e - 2\pi$$
 (b) $\frac{\pi(e^2 - 1)}{2}$ (c) $\ln(\pi) - \frac{1}{2}$ (d) $\frac{\pi(e^2 + 1)}{2}$ (e) $\ln 2 - \ln \pi$

3.
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{3n} =$$

(a) 1 (b) e (c) e^5 (d) e^6 (e) ∞

4. $\int_0^{\pi} \cos^4 x \, dx =$ (a) 2 (b) π (c) $\pi - \frac{1}{2}$ (d) $\sqrt{2\pi}$ (e) $3\pi/8$

5.
$$\int_0^1 x^3 \sqrt{1 - x^2} \, dx =$$

(a) 1/4 (b) 2/15 (c) $\sqrt{3/2}$ (d) $\pi/6$ (e) 1

- 6. Consider the two infinite series: (I) $\sum_{n=2}^{\infty} \frac{(-1)^n \sin(3n)}{n^2}$, $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 2}$
 - (a) Both converge absolutely
 (b) Both converge conditionally
 (c) Both diverge
 (d) I converges absolutely and II diverges
 (e) I converges absolutely and II converges conditionally
- 7. Evaluate $\lim_{x\to 0} \frac{e^{x^2} 1 x^2}{x \sin x x^2}$. (*Hint*: Use Taylor series.) (a) 0 (b) 3 (c) -1/3 (d) -3 (e) does not exist

- 8. Which of the following is the Maclaurin series for $\int_0^x \frac{\sin t t}{t^3} dt$?
 - (a) $-\frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$ (b) $-\frac{x^3}{3 \cdot 5!} + \frac{x^5}{5 \cdot 7!} - \frac{x^7}{7 \cdot 9!} + \cdots$ (c) $-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ (d) $-\frac{x}{3!} + \frac{x^3}{3 \cdot 5!} - \frac{x^5}{5 \cdot 7!} + \cdots$
- 9. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n(-3)^n}$ is: (a) $-5 < x \le 1$ (b) $-5 \le x < 1$ (c) $-3 \le x \le 3$ (d) $-1 < x \le 5$ (e) $-1 \le x \le 5$ 10. Bill, Gwen, Sue and Zach use the approximation $e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ with x =

10. Bill, Gwen, Sue and Zach use the approximation $e^{-} \approx 1 + x + \frac{1}{2} + \frac{1}{6}$ with x = 0.2 to compute $e^{0.2}$. They make the following assertions about the error E: Bill: |E| < 0.0004, Gwen: |E| < 0.0003Sue: |E| < 0.0002, Zach: |E| < 0.0001Which of them are correct? (Note: 1 < e < 3) (a) only Bill (b) only Bill and Gwen (c) only Bill, Gwen and Sue

11. Let y(x) be the solution of $\frac{dy}{dx} - 2y = 6$ such that y(0) = 1. Then y(1) is: (a) $(3 - e^2)/2$ (b) $e^{-2} - 3$ (c) $e^2 + 3$ (d) $4e^2 - 3$ (e) $-2e^2 - 3$

(e) none of them

(d) all of them

12. A thermometer is taken from a room where the temperature is 20° C to the outdoors where the temperature is 5° C. After one minute, the thermometer read 12° C. After how many minutes (after being taken outdoors) will the thermometer read 6° C?

(a)
$$\ln 15$$
 (b) $\ln 7/\ln 15$ (c) $\ln 15/\ln 7$
(d) $\ln 15/(\ln 15 - \ln 7)$ (e) $\ln 7/(\ln 15 - \ln 7)$
13. $\int_{0}^{\infty} \frac{1}{\sqrt{x}(1+x)} dx =$
(a) 0 (b) π (c) $\pi/2$ (d) $e/2$ (e) diverges

14. A couple plans to invest money at a constant rate of c dollars per year for T = 20 years. The interest rate of their investment is 5% per year, compounded continuously. What value of c will make the value of their investment equal to \$20,000 at T = 20 years?

(a)
$$20,000/(e-1)$$

(b) $1,000/(e-1)$
(c) $1,000 \cdot \ln 2$
(e) $20,000/\ln(20)$
(c) $1,000 \cdot \ln 2$
(e) $20,000e^{-1}$

15. Let
$$f(x) = \frac{1}{1 - e^x}$$
. Which of the following is true?
(i) The graph of f has a horizontal asymptote at $y = 1$.
(ii) The graph of f has a vertical asymptote at $x = 1$.
(iii) f is decreasing for $x > 0$.
(iv) f is concave upward for $x < 0$.
(a) (i) and (ii) (b) only (i) (c) (iii) and (iv)
(d) (i) and (iv) (e) (i), (iii), (iii), and (iv)

16. Until recently, hamburgers at a certain sports arena sold for \$4 each. The food concession sold an average of 8,000 hamburgers on a game night. When the price was raised to \$4.25, hamburger sales dropped to an average of 7,000 per night. Meanwhile, the concession's fixed costs are \$2,000 per night and the variable costs are \$1 per hamburger. Assuming the demand curve is linear, find the price of a hamburger that will maximize the average nightly hamburger profit.

(a)
$$\$3.00$$
 (b) $\$3.50$ (c) $\$3.75$ (d) $\$4.50$ (e) $\$5.00$

- 17. Evaluate $\int_0^1 x \ln x \, dx$. (a) -1/4 (b) -1/2 (c) 0 (d) 1/4 (e) 1/2
- 18. Recall that the distance from a point (x, y, z) in three-dimensional space to the origin is $D = \sqrt{x^2 + y^2 + z^2}$. Compute the *shortest* distance from the origin to a point on the surface $z = \frac{1}{xy}$.

(a) 5 (b)
$$\sqrt{5}$$
 (c) $\sqrt{2} + \sqrt{2}$ (d) $2 + 2\sqrt{2}$ (e) There is no closest point.
. The radius of a right circular cylinder is measured with an error of at most 3%, and

- 19. The radius of a right circular cylinder is measured with an error of at most 3%, and the height is measured with an error of at most 2%. Using differentials, approximate the maximum percentage error in the volume of the cylinder as calculated from these measurements.
 - (a) 5% (b) 7% (c) 8% (d) 10% (e) 12%

- 20. The coefficient of $(x 1)^4$ in the Taylor series centered at c = 1 for the function $\ln x$ is
 - (a) -1/4! (b) 1/3 (c) 6 (d) 1/4 (e) -1/4