Math 104 Makeup Final Exam — Spring 2011

1. Find the area of the region bounded by the graphs of $y = x^2 + 5x$ and of $y = -x^2 + 3x$. (a) 1/12 (b) 1/16 (c) 1/24 (d) 1/8 (e) 1/6 (f) 1/3

2. Consider the region in the x, y-plane that lies between the graphs of x = 1 and y = 3-x, between y = 0 and y = 1. Find the volume of the solid obtained by rotating this region about the y-axis.

(a)
$$16\pi/3$$
 (b) $11\pi/2$ (c) $(\pi+3)/4$ (d) π^2+2 (e) $17/\pi$ (f) $113/8$

3. Find the average value of the function
$$f(x) = (\ln x)/x$$
 on the interval $1 \le x \le 3$.
(a) $(\ln 6)/5$ (b) $(\ln 3)/6$ (c) $(\ln 2)/2$ (d) $((\ln 3)/2)^2$ (e) $((\ln 2)/3)^2$ (f) $(\ln(\ln 2))/2$
4. Evaluate $\int_0^{\pi/2} \cos(x)e^{\sin(x)} dx$.
(a) 0 (b) 1 (c) e (d) $e + 1$ (e) $e - 1$ (f) $e^2 - e$
5. Evaluate $\int_2^4 x (\ln x) dx$.
(a) 0 (b) $e^4 - e^2$ (c) $14 \ln 2 - 3$ (d) $6 \ln 2 + \pi$ (e) $e\pi + 4 \ln 2$ (f) $\cos(4) - \cos(2)$
6. Evaluate $\int_0^{1/2} \sqrt{1 - x^2} dx$.
(a) $\frac{1}{\pi} + \frac{1}{4}$ (b) $\frac{\sqrt{2}}{3} + \frac{2}{7}$ (c) $\frac{2}{e} + \frac{\ln 2}{6}$ (d) $\frac{7}{32} - \frac{1}{2\pi}$ (e) $\frac{\pi}{12} + \frac{\sqrt{3}}{8}$ (f) $\frac{\cos(1/2)}{2} - \frac{3}{\sqrt{\pi}}$
7. Evaluate $\int \frac{2}{y^3 + y} dy$.
(a) $2 \ln(y^3 + y) + C$ (b) $\ln\left(\frac{y^2}{y^2 + 1}\right) + C$ (c) $\frac{1}{y^2 + \ln y} + C$
(d) $\frac{1}{(y^3 + y)^2} + C$ (e) $\ln(2y^2 + 1) + C$ (f) $2 \ln |y| - y + C$
8. Evaluate the improper integral $\int_0^\infty \frac{x^2}{(x^3 + 1)^3} dx$.
(a) $\frac{1}{6}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\sqrt{\pi}$ (e) $\frac{\sqrt{2}}{277}$ (f) It is divergent.

9. The curve defined by $y = \sqrt{1+2x}$, between x = 1 and x = 3, is rotated about x-axis. Find the resulting surface area.

(a) $\ln(2) + \frac{128\pi}{5}$ (b) $\frac{\pi}{3} + e^2$ (c) $\frac{6}{\pi} \cos^{-1}\left(\frac{1}{3}\right)$ (d) $\frac{4+20\pi}{\sqrt{3}}$ (e) $\frac{\pi+1}{\sqrt{3}}$ (f) $\frac{16\pi}{3}(2\sqrt{2}-1)$ 10. Consider the region in the first quadrant that lies below the graph of $y = \sin(x^2) + \sin(x^2)$ $\cos(x^2)$, to the left of $x = \sqrt{\pi/2}$. Let A be the area of this region. Then the x-coordinate of the center of mass of this region is

(a)
$$\frac{1}{A}$$
 (b) $\frac{2}{A}$ (c) $A\sqrt{2}$ (d) $\frac{\pi}{3}$ (e) $\frac{\pi}{2A}$ (f) $\frac{A}{\sqrt{\pi}-1}$

11. Suppose that a certain probability density function f(x) is given by:

$$f(x) = \frac{Ax}{(1+x^2)^2}$$
 for $x \ge 0$; $f(x) = 0$ for $x \le 0$,

for some constant A. Then the probability that the corresponding random variable lies between -1 and 1 is:

(c) 1/2 (d) 2/3 (e) π (f) $1/\sqrt{2}$ (b) $1/\pi$ (a) 1/e

12. Determine the limit of the sequence $x_n = \frac{(-3.14)^n}{\pi^n}$ as $n \to \infty$. (b) $\ln 2$ (c) $1/\pi$ (d) $\sqrt{2} - 1$ (e) $\ln(\pi/2)$ (f) The limit does not exist. (a) 0

- 13. The series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \frac{1}{5^2} \frac{1}{6^2} + \cdots$
- (a) converges to a sum between 1/2 and 3/4.
- (b) converges to a sum between 3/4 and 1.
- (c) converges to a sum between 1 and 2.
- (d) converges to a sum that is greater than 2.
- (e) converges to a negative sum.
- (f) diverges.

15.

14. The series
$$\sum_{n=2}^{\infty} \frac{2}{n \ln(n)}$$

(f) diverges by the integral test.

- (c) converges by the ratio test.
- (e) converges by the integral test.
- (a) converges by comparison with $\sum_{n=2}^{\infty} \frac{2}{n}$. (b) diverges by comparison with $\sum_{n=2}^{\infty} \frac{2}{n}$. (d) diverges by the ratio test.

The series
$$\sum_{n=1}^{\infty} \frac{n!}{e^n}$$

- (a) converges by the *p*-test.
- (b) diverges by the *p*-test.
- (c) converges because the terms approach zero.
- (d) diverges because the terms do not approach zero.
- (e) converges by the alternating series test.
- (f) diverges by the alternating series test.

16. Find the radius of convergence of the series $\sum_{n=0}^{\infty} n^2 (n-3)^2 (ex-\pi)^n.$ (b) 1/e (c) π (d) $1/\pi$ (e) e/π (f) π/e (a) e17. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}$. (b) 2 (c) 3 (d) 4 (e) 5 (a) 1 (f) The series diverges. 18. Consider the polynomial $1 - \frac{x^2}{2!}$ as an approximation to $\cos(x)$ on the closed interval $-1 \le x \le 1$. What is the best bound on the error that is given by Taylor's inequality? (a) 1/36 (b) 1/24 (c) 1/10 (d) 1/2 (e) $\pi/2$ (f) $\cos(1)$ 19. What is the general solution of the differential equation $\frac{dy}{dx} = -\frac{xy}{y^2+1}$? What is the behavior of the solutions as $x \to \infty$? (a) $y = -\frac{1}{4}x^2\ln(y^2+1) + C$ and $y \to -\infty$. (b) $y = -\frac{1}{4}x^2\ln(y^2+1) + C$ and $y \to 0$. (c) $\frac{y^2}{2} + \ln(y) = -\frac{x^2}{2} + C$ and $y \to 0$. (d) $\frac{y^2}{2} + \ln(y) = -\frac{x^2}{2} + C$ and $y \to \infty$. (e) $\frac{y^3}{3} + y = -\frac{x^2y}{2} + C$ and $y \to \infty$. (f) $\frac{y^3}{3} + y = -\frac{x^2y}{2} + C$ and $y \to -\infty$.

20. Which of the following curves is an orthogonal trajectory to the family of curves $\frac{x^2}{4} + \frac{y^2}{9} = C$, where C is an arbitrary positive constant?

(a)
$$\frac{x}{4} - \frac{y}{9} = 1$$
 (b) $\frac{x}{9} - \frac{y}{4} = 1$ (c) $y = x^{-4/9}$
(d) $y = x^{-9/4}$ (e) $y = 2x^{4/9}$ (f) $y = 2x^{9/4}$