Math 104 Final Exam — Spring 2010

1. Compute the area of the region in the first quadrant bounded by the curves $x = \sqrt{2-y}$, $y = x^2$, and the y-axis.

(a) 1/6 (b) 5/6 (c) 7/6 (d) 4/3 (e) 3/4 (f) 21/12

2. Find the volume of the solid obtained by rotating the region bounded by the curves y = 1/x and the x-axis between x = 1 and x = 2 about the x-axis.

(a) π (b) $\pi/2$ (c) $\pi/3$ (d) $\pi/4$ (e) $2\pi/3$ (f) $3\pi/4$

3. Find the volume of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the y-axis.

(a)
$$\pi/2$$
 (b) $\pi/3$ (c) $\pi/4$ (d) $\pi/5$ (e) $\pi/6$ (f) $\pi/7$
4. Evaluate $\int_{1}^{e^3} \frac{\sqrt{\ln x}}{x} dx$.
(a) $2\sqrt{3}$ (b) $e^2 - e^{-2}$ (c) $\frac{e^2}{3}$ (d) $e^2 - 1$ (e) $\sqrt{\ln e^4} - 1$ (f) 3.46
5. Evaluate $\int_{0}^{\pi/2} x^2 \sin x \, dx$.
(a) $\pi/4$ (b) -1 (c) $\pi - 2$ (d) $\ln(\pi/2)$ (e) $\pi - e$ (f) 1.14
6. Evaluate $\int_{0}^{1/2} \cos^3(\pi x) \, dx$.
(a) $\sqrt{2} + \pi$ (b) $\pi/2$ (c) $\frac{\pi}{4} - e + \frac{1}{2}$ (d) $\sqrt{\pi}$ (e) $\ln 2$ (f) $\frac{2}{3\pi}$
7. Evaluate $\int_{0}^{1} \frac{4x}{(x+1)(x^2+1)} \, dx$.
(a) $\pi/4 - 1/2$ (b) $\pi/2 - \ln 2$ (c) $32/51$ (d) $\pi/8$ (e) $e/9$ (f) 0.28
8. Evaluate the improper integral $\int_{2}^{\infty} \frac{1}{(x-1)^3} \, dx$.
(a) $\frac{1}{2}$ (b) $\frac{\pi}{2} - e$ (c) $\frac{\pi}{4}$ (d) $\sqrt{\pi}$ (e) $\ln 2 + \frac{1}{3}$ (f) divergent
9. Find the arclength of the part of the curve $y = \frac{2}{\pi}(x-4)^{3/2}$ between the points (

9. Find the arclength of the part of the curve $y = \frac{2}{3}(x-4)^{3/2}$ between the points $(7, 2\sqrt{3})$ and $(12, \frac{32}{3}\sqrt{2})$. (a) 19 (b) 65/2 (c) 55/2 (d) 55 (e) 38/3 (f) 19/2

10. An artist is designing a wine glass in a flower shape, which can be generated by rotating the region bounded by $y = \sqrt{x}$ and x = y, between x = 0 and x = 1, about x-axis. What is the surface area (which contains both the inside and the outside surfaces) of such a glass?

(a)
$$\left(\frac{8\sqrt{2}-4}{3}+\sqrt{2}\right)\pi$$
 (b) $\left(\frac{8\sqrt{2}-4}{3}+\sqrt{5}\right)\pi$ (c) $\left(\frac{8\sqrt{2}-4}{3}+1\right)\pi$
(d) $\left(\frac{5\sqrt{5}-1}{6}+\sqrt{2}\right)\pi$ (e) $\left(\frac{5\sqrt{5}-1}{6}+\sqrt{5}\right)\pi$ (f) $\left(\frac{5\sqrt{5}-1}{6}+1\right)\pi$

11. What is the x-coordinate of the centroid of the region bounded by the graph of $y = \sqrt[3]{x}$, the line x = 8, and the x-axis?

(a) 8 (b) $\frac{16}{7}$ (c) $\frac{32}{7}$ (d) $\frac{2}{3}$ (e) 4 (f) $\frac{224}{9}$

12. Consider the initial value problem $\frac{dy}{dt} - y = 1$, with y(0) = 3. Find y(1). (a) e (b) e - 1 (c) 3e (d) 3e - 1 (e) 4e (f) 4e - 1

13. The size P(t) of a certain population at time t satisfies the differential equation $\frac{dP}{dt} = \frac{P}{2} \left(1 - \frac{P}{2000} \right)$. At t=0 the population is 400. What is the behavior of P(t) as $t \to \infty$?

(a) $P(t) \rightarrow 0$ (b) $P(t) \rightarrow \infty$ (c) $P(t) \rightarrow 4000$ (d) $P(t) \rightarrow 2000$ (e) $P(t) \rightarrow 800$ (f) P(t) oscillates between 200 and 4000.

14. Determine if the sequence $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$ converges or diverges. If it converges, find the limit.

(a) 2 (b) $\frac{1}{2}$ (c) $\sqrt{2}$ (d) $\frac{1}{\sqrt{2}}$ (e) 0 (f) The sequence is divergent.

15. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)}$ converges or diverges. If it converges, find the sum.

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{2}$ (c) 1 (d) $\frac{3}{4}$ (e) $\frac{3}{2}$ (f) The series is divergent.

16. The series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

(a) converges because the terms approach 0.

- (b) diverges because the terms do not approach 0.
- (c) converges by the alternating series test.
- (d) diverges by the alternating series test.
- (e) converges by the comparison test.
- (f) diverges by the geometric series test.

17. The series
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+3)2^{2n}}{3^{n+100}}$$

- (a) converges absolutely by the ratio test.
- (b) converges conditionally (but not absolutely) by the ratio test.
- (c) diverges by the ratio test.
- (d) converges absolutely by comparison with $\sum_{n=1}^{\infty} \frac{1}{3^n}$.
- (e) converges conditionally (but not absolutely) by comparison with $\sum_{n=1}^{\infty} (-1)^n \frac{n+3}{3^n}$.
- (f) diverges by comparison with $\sum_{n=1}^{\infty} (-1)^n 4^n$.

18. The power series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{2^n}$ converges (a) to the function 2/(5-x) precisely on the interval 1 < x < 5. (b) to the function 2/(5-x) precisely on the interval -3 < x < 3. (c) to the function 5/(2-x) precisely on the interval $0 \le x \le 2$. (d) to the function 5/(2-x) precisely on the interval $0 \le x \le 6$. (e) only at x = 0. (f) only at x = 3.

19. The Maclaurin series for the function $x \cos(2x)$ is

(a)
$$\frac{2x^2}{2!} - \frac{2x^4}{4!} + \frac{2x^6}{6!} - \frac{2x^8}{8!} + \cdots$$

(b) $x - \frac{2x^2}{2!} + \frac{2^2x^3}{3!} - \frac{2^3x^4}{4!} + \cdots$
(c) $1 + 2x + \frac{2^2x^2}{2!} + \frac{2^3x^3}{3!} + \cdots$
(d) $1 - \frac{x^2}{2 \cdot 2!} + \frac{x^4}{2 \cdot 4!} - \frac{x^6}{2 \cdot 6!} + \cdots$
(e) $x - \frac{2^2x^3}{2!} + \frac{2^4x^5}{4!} - \frac{2^6x^7}{6!} + \cdots$
(f) $x - 2x^2 + 2^2x^3 - 2^3x^4 + \cdots$

20. Consider the polynomial $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ as an approximation to e^x on the interval $-2 \le x \le 2$. What is the best bound on the error for this estimate that is given by Taylor's inequality?

(a) 1/24 (b) e/12 (c) $2e^2/3$ (d) $e^3/4$ (e) $3e^4/2$ (f) e^5