Math 104 Final Exam - Spring 2010

1. Compute the area of the region in the first quadrant bounded by the curves $x=\sqrt{2-y}$, $y=x^{2}$, and the y-axis.
(a) $1 / 6$
(b) $5 / 6$
(c) $7 / 6$
(d) $4 / 3$
(e) $3 / 4$
(f) $21 / 12$
2. Find the volume of the solid obtained by rotating the region bounded by the curves $y=1 / x$ and the x-axis between $x=1$ and $x=2$ about the x-axis.
(a) π
(b) $\pi / 2$
(c) $\pi / 3$
(d) $\pi / 4$
(e) $2 \pi / 3$
(f) $3 \pi / 4$
3. Find the volume of the solid obtained by rotating the region bounded by the curves $y=x$ and $y=x^{2}$ about the y-axis.
(a) $\pi / 2$
(b) $\pi / 3$
(c) $\pi / 4$
(d) $\pi / 5$
(e) $\pi / 6$
(f) $\pi / 7$
4. Evaluate $\int_{1}^{e^{3}} \frac{\sqrt{\ln x}}{x} d x$.
(a) $2 \sqrt{3}$
(b) $e^{2}-e^{-2}$
(c) $\frac{e^{2}}{3}$
(d) $e^{2}-1$
(e) $\sqrt{\ln e^{4}}-1$
(f) 3.46
5. Evaluate $\int_{0}^{\pi / 2} x^{2} \sin x d x$.
(a) $\pi / 4$
(b) -1
(c) $\pi-2$
(d) $\ln (\pi / 2)$
(e) $\pi-e$
(f) 1.14
6. Evaluate $\int_{0}^{1 / 2} \cos ^{3}(\pi x) d x$.
(a) $\sqrt{2}+\pi$
(b) $\pi / 2$
(c) $\frac{\pi}{4}-e+\frac{1}{2}$
(d) $\sqrt{\pi}$
(e) $\ln 2$
(f) $\frac{2}{3 \pi}$
7. Evaluate $\int_{0}^{1} \frac{4 x}{(x+1)\left(x^{2}+1\right)} d x$.
(a) $\pi / 4-1 / 2$
(b) $\pi / 2-\ln 2$
(c) $32 / 51$
(d) $\pi / 8$
(e) $e / 9$
(f) 0.28
8. Evaluate the improper integral $\int_{2}^{\infty} \frac{1}{(x-1)^{3}} d x$.
(a) $\frac{1}{2}$
(b) $\frac{\pi}{2}-e$
(c) $\frac{\pi}{4}$
(d) $\sqrt{\pi}$
(e) $\ln 2+\frac{1}{3}$
(f) divergent
9. Find the arclength of the part of the curve $y=\frac{2}{3}(x-4)^{3 / 2}$ between the points $(7,2 \sqrt{3})$ and $\left(12, \frac{32}{3} \sqrt{2}\right)$.
(a) 19
(b) $65 / 2$
(c) $55 / 2$
(d) 55
(e) $38 / 3$
(f) $19 / 2$
10. An artist is designing a wine glass in a flower shape, which can be generated by rotating the region bounded by $y=\sqrt{x}$ and $x=y$, between $x=0$ and $x=1$, about x-axis. What is the surface area (which contains both the inside and the outside surfaces) of such a glass?
(a) $\left(\frac{8 \sqrt{2}-4}{3}+\sqrt{2}\right) \pi$
(b) $\left(\frac{8 \sqrt{2}-4}{3}+\sqrt{5}\right) \pi$
(c) $\left(\frac{8 \sqrt{2}-4}{3}+1\right) \pi$
(d) $\left(\frac{5 \sqrt{5}-1}{6}+\sqrt{2}\right) \pi$
(e) $\left(\frac{5 \sqrt{5}-1}{6}+\sqrt{5}\right) \pi$
(f) $\left(\frac{5 \sqrt{5}-1}{6}+1\right) \pi$
11. What is the x-coordinate of the centroid of the region bounded by the graph of $y=\sqrt[3]{x}$, the line $x=8$, and the x-axis?
(a) 8
(b) $\frac{16}{7}$
(c) $\frac{32}{7}$
(d) $\frac{2}{3}$
(e) 4
(f) $\frac{224}{9}$
12. Consider the initial value problem $\frac{d y}{d t}-y=1$, with $y(0)=3$. Find $y(1)$.
(a) e
(b) $e-1$
(c) $3 e$
(d) $3 e-1$
(e) $4 e$
(f) $4 e-1$
13. The size $P(t)$ of a certain population at time t satisfies the differential equation $\frac{d P}{d t}=\frac{P}{2}\left(1-\frac{P}{2000}\right)$. At $\mathrm{t}=0$ the population is 400. What is the behavior of $P(t)$ as $t \rightarrow \infty$?
(a) $P(t) \rightarrow 0$
(b) $P(t) \rightarrow \infty$
(c) $P(t) \rightarrow 4000$
(d) $P(t) \rightarrow 2000$
(e) $P(t) \rightarrow 800$
(f) $P(t)$ oscillates between 200 and 4000 .
14. Determine if the sequence $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$ converges or diverges. If it converges, find the limit.
(a) 2
(b) $\frac{1}{2}$
(c) $\sqrt{2}$
(d) $\frac{1}{\sqrt{2}}$
(e) 0
(f) The sequence is divergent.
15. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)}$ converges or diverges. If it converges, find the sum.
(a) $\frac{1}{6}$
(b) $\frac{1}{2}$
(c) 1
(d) $\frac{3}{4}$
(e) $\frac{3}{2}$
(f) The series is divergent.
16. The series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
(a) converges because the terms approach 0 .
(b) diverges because the terms do not approach 0 .
(c) converges by the alternating series test.
(d) diverges by the alternating series test.
(e) converges by the comparison test.
(f) diverges by the geometric series test.
17. The series $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n+3) 2^{2 n}}{3^{n+100}}$
(a) converges absolutely by the ratio test.
(b) converges conditionally (but not absolutely) by the ratio test.
(c) diverges by the ratio test.
(d) converges absolutely by comparison with $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$.
(e) converges conditionally (but not absolutely) by comparison with $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+3}{3^{n}}$.
(f) diverges by comparison with $\sum_{n=1}^{\infty}(-1)^{n} 4^{n}$.
18. The power series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{2^{n}}$ converges
(a) to the function $2 /(5-x)$ precisely on the interval $1<x<5$.
(b) to the function $2 /(5-x)$ precisely on the interval $-3<x<3$.
(c) to the function $5 /(2-x)$ precisely on the interval $0 \leq x \leq 2$.
(d) to the function $5 /(2-x)$ precisely on the interval $0 \leq x \leq 6$.
(e) only at $x=0$.
(f) only at $x=3$.
19. The Maclaurin series for the function $x \cos (2 x)$ is
(a) $\frac{2 x^{2}}{2!}-\frac{2 x^{4}}{4!}+\frac{2 x^{6}}{6!}-\frac{2 x^{8}}{8!}+\cdots$.
(b) $x-\frac{2 x^{2}}{2!}+\frac{2^{2} x^{3}}{3!}-\frac{2^{3} x^{4}}{4!}+\cdots$.
(c) $1+2 x+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}+\cdots$.
(d) $1-\frac{x^{2}}{2 \cdot 2!}+\frac{x^{4}}{2 \cdot 4!}-\frac{x^{6}}{2 \cdot 6!}+\cdots$.
(e) $x-\frac{2^{2} x^{3}}{2!}+\frac{2^{4} x^{5}}{4!}-\frac{2^{6} x^{7}}{6!}+\cdots$.
(f) $x-2 x^{2}+2^{2} x^{3}-2^{3} x^{4}+\cdots$.
20. Consider the polynomial $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$ as an approximation to e^{x} on the interval $-2 \leq x \leq 2$. What is the best bound on the error for this estimate that is given by Taylor's inequality?
(a) $1 / 24$
(b) $e / 12$
(c) $2 e^{2} / 3$
(d) $e^{3} / 4$
(e) $3 e^{4} / 2$
(f) e^{5}
