MATHEMATICS DEPARTMENT UNIVERSITY of PENNSYLVANIA Mathematics 104 Final Examination Spring 2009

Your Name:_____

Your Professor (check one): Crotty Shaneson vanErp

*Your TA:*_____

Instructions:

You have 2 hours to complete this examination.

Please write all answers below

- This exam contains 20 multiple-choice questions. Please write the letter corresponding to your answer on the appropriate line *on your answer sheet (below)*. If you change an answer, please either erase or cross out the answer you do not want considered; questions with more than one answer will be marked wrong.
- Please show your work in the space provided on this question sheet. An answer with no supporting work may receive little or no credit. Partial credit *may* be given based on your work.
- Each question is worth 10 points.

weis:					
1	С	11	Ε		
2	F	12	В		
3	Α	13	F		
4	В	14	С		
5	D	15	В		
6	С	16	С		
7	Ε	17	Α		
8	Α	18	Е		
9	В	19	F		
10	Ε	20	D		

-----Please do not write below this line-----

Score:

1. Find the arc length of the graph of $y = x^{\frac{3}{2}}$ for $0 \le x \le 4$.

a)
$$\frac{928}{135}$$
 b) $\frac{64}{27}$ c) $\frac{8}{27} (10\sqrt{10} - 1)$ d) 2 e) $\frac{94}{27} \sqrt{94} - \frac{13}{27} \sqrt{13}$ f) 7

2. Compute: $\int_0^{\pi} x \sin x \, dx$

a) $4\pi - 2$ b) $2\pi - 2$ c) $\pi/2$ d) $4\pi - 4$ e) $\pi - 2$ f) π

3. The base of a solid is a semi-circular disk $\{(x, y) | x^2 + y^2 \le 1, x \ge 0\}$. Cross sections perpendicular to the *x*-axis are squares with their vertices on the semi-circle. Compute the volume of the solid.

0.0

a)
$$\frac{8}{3}$$
 b) π^2 c) $\frac{2\pi}{3}$ d) $\frac{\pi^2}{4}$ e) 1 f) 4

4. Compute: $\int_{1}^{\infty} \frac{1}{(1+x)^4} dx$

a) 0 b)
$$\frac{1}{24}$$
 c) $\frac{1}{8}$ d) $-\frac{1}{4}$ e) $\frac{1}{2}$ f) divergent

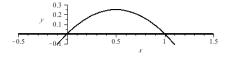
5. Which of the three series given below converge?

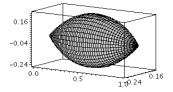
I)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
 II) $\sum_{n=0}^{\infty} \frac{\pi^n}{3^n}$ III) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$
a) all diverge b) I only c) II only

d) III only

e) I and II only

f) all converge


6. What is the radius of convergence of the series $\sum_{n=0}^{\infty} n(n+1)^2 (\pi x - 2)^n$


a)
$$\pi$$
 b) $\frac{2}{\pi}$ c) $\frac{1}{\pi}$ d) 0 e) 2 f) ∞

- 7. The region bounded by the curves $y = x x^2$ and y = 0 is rotated about the x-axis. Compute the volume of the resulting solid.
 - a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{\pi}{12}$ d) $\frac{\pi}{15}$ e) $\frac{\pi}{30}$ f) $\frac{\pi}{36}$

The region

The solid

8. Compute: $\int_0^{\pi/2} \sin^2 x \cos^3 x \, dx$

a)
$$\frac{2}{15}$$
 b) $\frac{4}{15}$ c) $\frac{2}{5}$ d) $\frac{8}{15}$ e) $\frac{14}{15}$ f) divergent

- The approximation $e \approx 1 + 1 + \frac{1}{2} + \frac{1}{6} = \frac{8}{3}$ is obtained from the first four terms of the Maclaurin 9. expansion of e^x , x = 1. From the Taylor Remainder Theorem, which of the following is the *guaranteed* maximum absolute value of the error, $|\mathbf{R}_{\mathbf{n}}|$, of this approximation (you may take it as known that $e \leq 3$). c) $\frac{1}{6}$ $\frac{1}{8}$ 1
 - a) 24 d) 0 e) ∞ f) 1

10. Market research has shown the price (p) and weekly sales (y(p)) of a particular product are related by the following differential equation:

$$\frac{dy}{dp} = -\frac{1}{2} \left(\frac{y}{p+3} \right)$$

If sales amount to 100 units when the price is 1 (i.e., y(1) = 100), what will the weekly sales be if the price is raised to 6?

11. The third non-vanishing (i.e., non-zero) term in the Maclaurin expansion of the function:

$$f(x) = \int_0^x \sin t^2 dt$$

is:

a)
$$\frac{x^{10}}{10!}$$
 b) $\frac{x^{11}}{120}$ c) $-\frac{x^{11}}{1320}$ d) $\frac{x^{11}}{11!}$ e) $\frac{x^{11}}{1320}$ f) $\frac{x^9}{12}$

12. The series
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{1 + \sqrt{n}}$$

a) converges absolutely

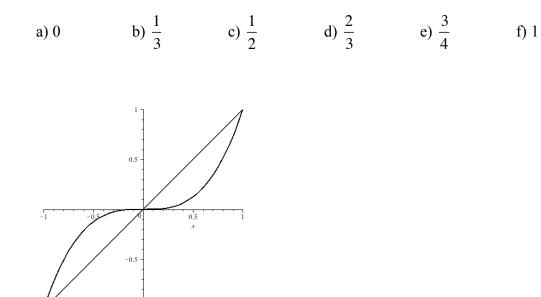
b) converges conditionally

c) diverges

d) convergence/divergence cannot be determined

13. Determine the limit of the sequence $\frac{(-2)^n}{n}$ if it exists.

a) 0	b) ln2	c) 1	d) 2	e) <i>e</i>	f) divergent
------	--------	------	------	-------------	--------------


14. Use Euler's method with a step size of 1 to estimate y(2) if

a) 0 b) 1 c) 2 d) 3 e) 4 f)
$$\infty$$

15. Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-3)^n}{\sqrt{n+1}} (x-1)^n$

a)
$$\left(\frac{2}{3}, \frac{4}{3}\right)$$

b) $\left(\frac{2}{3}, \frac{4}{3}\right)$
c) $\left[\frac{2}{3}, \frac{4}{3}\right)$
d) $\left(\frac{1}{3}, \frac{5}{3}\right)$
e) $\left[\frac{1}{3}, \frac{5}{3}\right]$
f) $\left(\frac{1}{3}, \frac{5}{3}\right]$

16. Find the total area of the region bounded by the curves y = x and $y = x^3$.

-1

17. Solve the differential equation $\frac{dy}{dx} = \frac{e^{2x}}{6y^5}$ subject to y(0) = 1.

a)
$$y = \pm \sqrt[6]{\frac{1}{2}e^{2x} + \frac{1}{2}}$$

b) $y = \pm \sqrt[6]{\frac{e^{2x}}{2}}$
c) $y = \pm \sqrt[6]{2e^{2x}}$
d) $y = \pm \sqrt[6]{\frac{e^{2x}}{2}}$
e) $y = \pm \sqrt[6]{\frac{1}{5}e^{6x} + 5}$
f) $y = \pm \sqrt[6]{e^{2x} + 2}$

18. Compute:
$$\int_{0}^{1} \frac{dx}{\sqrt{x^{2} + 1}}$$

a) π b) $\frac{3}{4}$ c) $\ln\left(\frac{\sqrt{2}}{2}\right)$ d) $\frac{\pi}{4}$ e) $\ln(1 + \sqrt{2})$ f) 0

19. Compute;
$$\int_0^1 \frac{dx}{3x-2}$$

a) 0 b) 2 c)
$$\frac{\ln 2}{3}$$
 d) $-\frac{\ln 2}{3}$ e) $\frac{\ln 3}{2}$ f) divergent

20. Compute:
$$\int_{2}^{3} \frac{dx}{x^{2} - x}$$

a) $\frac{3}{2}$ b) $\frac{4}{3}$ c) ln 2 d) ln $\frac{4}{3}$ e) ln $\frac{3}{2}$ f) ln 3