Final Exam - April 29, 2005
Math 104
Name:

Student ID Number:

Instructor:

Teaching Assistant:

Section Number:

Recitation Day/Time:

There are twenty multiple choice questions on this examination. Show your work in the space provided, and then carefully transfer your answers to this sheet. Please write legibly. No calculators, books, or notes may be used except for one two-sided 8.5 "x11" sheet of notes. Good luck!

Question	Answer	Points
1		$/ 5$
2		$/ 5$
3		$/ 5$
4		$/ 5$
5		$/ 5$

6		$/ 5$
7		$/ 5$
8		$/ 5$
9		$/ 5$
10		$/ 5$

11	
12	
13	
14	$/ 5$
15	

16		$/ 5$
17		$/ 5$
18		$/ 5$
19		$/ 5$
20		$/ 5$

TOTAL $\quad / 100$

1. Find the area of the surface generated by revolving the curve $y=\frac{x^{3}}{3}, 0 \leq x \leq 1$ about the x -axis.
(A) 1
(B) $\frac{2}{3}$
(C) $\frac{1}{9}$
(D) $\frac{1}{12}$
(E) $\frac{4 \sqrt{2} \pi}{3}$
(F) $\frac{2 \sqrt{2} \pi}{9}$
(G) $\frac{2 \sqrt{2} \pi}{12}$
(H) $\frac{2 \pi}{3}(2 \sqrt{2}-1)$
(I) $\frac{\pi}{9}(2 \sqrt{2}-1)$
(J) $\frac{\pi}{12}(2 \sqrt{2}-1)$
2. Find the area of the region bounded by $y=\frac{2}{x}$ and $y=-x+3$.
(A) 0
(B) $\frac{3 \pi}{2}$
(C) $\sqrt{3} \pi$
(D) $\sqrt{6} \pi$
(E) $\frac{3}{2}-\ln 4$
(F) $\sqrt{3}-\ln 4$
(G) $\sqrt{6}-\ln 4$
(H) $\frac{3}{2}-\ln \sqrt{2} \quad \sqrt{3}-\ln \sqrt{2} \quad \sqrt{6}-\ln \sqrt{2}$
3. Find the volume of the solid obtained by revolving the region bounded by the x -axis, the curve $y=\ln x$, and the line $x=e$ about the \mathbf{y}-axis.
(A) π
(B) $\pi\left(e^{2}+1\right)$
(C) $\pi\left(e^{2}+4\right)$
(D) $\pi^{2}\left(e^{2}+1\right)$
(E) $\pi^{2}\left(e^{2}+4\right)$
(F) $\frac{\pi}{2}$
(G) $\frac{\pi}{2}\left(e^{2}+1\right)$
(H) $\frac{\pi}{2}\left(e^{2}+4\right)$
(I) $\frac{\pi^{2}}{2}\left(e^{2}+1\right)$
(J) $\frac{\pi^{2}}{2}\left(e^{2}+4\right)$
4. Find the volume of the solid obtained by revolving the region bounded by the x-axis, the curve $y=\sin x, 0 \leq x \leq \pi$ about the \mathbf{y}-axis.
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) 2
(E) π
(F) $\frac{\pi}{2}$
(G) 2π
(H) π^{2}
(I) $\frac{\pi^{2}}{2}$
(J) $2 \pi^{2}$
5. Find a curve through the origin whose length from a to b is given by the following integral.

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{1}{1+x^{2}}\right)^{2}} d x
$$

(A) $\sec ^{-1} x$
(B) $\tan ^{-1} x$
(C) $\sin ^{-1} x$
(D) $\ln \left(x^{2}+1\right)$
(E) $\frac{-1}{x^{2}+1}$
(F) $\sec ^{-1} x-1$
(G) $\tan ^{-1} x-1$
(H) $\sin ^{-1} x-1$
(I) $\ln \left(x^{2}+1\right)-1$
(J) $\frac{-1}{x^{2}+1}$
6. Solve the following initial value problem.

$$
\frac{d y}{d x}+\frac{3}{x} y=x^{2}, \quad y(1)=1
$$

(A) $y=x$
(B) $y=\frac{1}{2} x^{3}$
(C) $y=\frac{1}{3} x^{3}$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\frac{1}{2} x^{3}+\frac{1}{2} x^{-3}$
(F) $y=\frac{1}{3} x^{3}+\frac{2}{3} x^{-3}$
(G) $y=\frac{1}{6} x^{3}+\frac{5}{6} x^{-3}$
(H) $y=\frac{1}{2} x^{3}-\frac{1}{2} x^{-3}$
(I) $y=\frac{1}{3} x^{3}-\frac{2}{3} x^{-3}$
(J) $y=\frac{1}{6} x^{3}-\frac{5}{6} x^{-3}$
7. The amount $y(t)$ of alcohol in the bloodstream declines at a rate proportional to itself. This rate varies from one person to another. If it takes two hours for a person's blood-alcohol level to drop from .10 to .08 , what will the blood-alcohol level be after an additional 2 hours?
(A) 0
(B) $\frac{1}{15} \approx .066$
(C) $\frac{2}{33} \approx .061$
(D) $\frac{3}{50}=.060$
(E) $\frac{4}{63} \approx .063$
(F) $\frac{5}{72} \approx .070$
(G) $\frac{6}{77} \approx .078$
(H) $\frac{7}{120} \approx .058$
(I) $\frac{8}{125}=.064$
(J) $\frac{9}{160} \approx .056$
8. Evaluate the following limit.

$$
\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}
$$

(A) 1
(B) e
(F) $\frac{1}{e}$
(G) $\frac{1}{e^{2}}$
(C) e^{2}
(D) \sqrt{e}
(H) $\frac{1}{\sqrt{e}}$
(I) $\frac{1}{e^{2}-\sqrt{e}}$
(E) $e^{2}-\sqrt{e}$
(J) The limit does not exist.
9. Evaluate the following definite integral.

$$
\int_{0}^{\pi} e^{x} \sin x d x
$$

(A) 1
(B) $\frac{1}{2}$
(C) π
(D) $\frac{\pi}{2}$
(E) $e^{\pi}+1$
(F) $e^{2 \pi}+1$
(G) $e^{2 \pi}+e^{\pi}+1$
(H) $\frac{e^{\pi}+1}{2}$
(I) $\frac{e^{2 \pi}+1}{2}$
(J) $\frac{e^{2 \pi}+e^{\pi}+1}{2}$
10. Evaluate the following definite integral.

$$
\int_{2}^{9} \frac{x+4}{(x+6)(x-1)} d x
$$

(A) $\frac{2}{7} \ln 5$
(B) $\frac{2}{7} \ln 5+\frac{3}{7} \ln 15$
(C) $\frac{2}{7} \ln 8+\frac{3}{7} \ln 15$
(D) $\frac{2}{7} \ln 5+\frac{3}{7} \ln 12$
(E) $\frac{2}{7} \ln 8+\frac{3}{7} \ln 12$
(F) $\frac{3}{7} \ln 5+\frac{2}{7} \ln 15$
(G) $\frac{3}{7} \ln 8+\frac{2}{7} \ln 15$
(H) $\frac{3}{7} \ln 5+\frac{2}{7} \ln 12$
(I) $\frac{3}{7} \ln 8+\frac{2}{7} \ln 12$
(J) ∞
11. Evaluate the following definite integral.

$$
\int_{0}^{\sqrt{5}} \frac{x^{3}}{\sqrt{x^{2}+4}} d x
$$

(A) $\frac{7}{3}$
(B) $\frac{5}{2}$
(C) $\sqrt{5}$
(D) $\frac{7 \sqrt{5}}{3}$
(F) $\frac{7}{3} \tan ^{-1} \sqrt{5}$
(G) $\frac{5}{2} \tan ^{-1} \sqrt{5}$
(H) $\frac{7 \sqrt{5}}{3} \tan ^{-1} \sqrt{5}$
(I) $\frac{5 \sqrt{5}}{2} \tan ^{-1} \sqrt{5}$
(J) ∞
12. Evaluate the following definite integral.

$$
\int_{0}^{2} \frac{1}{(x-1)^{2}} d x
$$

(A) 0
(B) 2
(C) -2
(D) $\ln 2$
(E) $-\ln 2$
(F) $2+\ln 2$
(G) $2-\ln 2$
(H) $-2+\ln 2$
(I) $-2-\ln 2$
(J) ∞
13. Find the limit of the following sequence.
$(\sin \pi n)^{n}$
(A) 0
(B) 1
(C) π
(D) π^{2}
(E) $\sqrt{\pi}$
(F) e
(G) e^{2}
(H) \sqrt{e}
(I) $\pi+e$
(J) The sequence diverges.
14. The limit of the sequence

$$
a_{n}=\frac{n(\sin (n)+3)}{n^{2}+1}
$$

is:
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
(F) -1
(G) -2
(H) -3
(I) -4
(J) The sequence is divergent.
15. Consider the following four series:
I. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
II. $\sum_{n=1}^{\infty} 2^{n}$
III. $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$
IV. $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$

Which of the following statements is true?
(A) I, II, III, and IV all converge.
(B) I and II converge, but III and IV diverge.
(C) I and III converge, but II and IV diverge.
(D) I and IV converge, but II and III diverge.
(E) I converges, but II, III, and IV diverge.
(F) I diverges, but II, III, and IV converge.
(G) I and IV diverge, but II and III converge.
(H) I and III diverge, but II and IV converge.
(I) I and II diverge, but III and IV converge.
(J) I, II, III, and IV all diverge.
16. Consider the following three series.
I. $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n^{3}+7\right)}{n^{5}+3 n^{4}}$
II. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}$
III. $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n^{2}+7\right)}{3 n^{2}+5 n}$

Which of the following statements is true?
(A) I, II, and III all converge absolutely.
(B) I converges absolutely, II diverges, and III converges conditionally.
(C) I converges absolutely, II converges conditionally, and III diverges.
(D) I, II, and III converge conditionally.
(E) I converges conditionally, and II and III converge absolutely.
(F) I converges conditionally, and II and III diverge.
(G) I, II, and III all diverge.
(H) I diverges, and II and III converge absolutely.
(I) I diverges, and II converges conditionally, and III converges absolutely.
(J) I and II diverge, and III converges conditionally.
17. The interval of convergence of the series

$$
\sum_{n=2}^{\infty} \frac{(3 x-2)^{n}}{\ln (n)}
$$

is:
(A) 0
(B) $[2,3]$
(C) $[2,3)$
(D) $(2,3]$
(E) $(2,3)$
(F) $\left[\frac{1}{3}, 1\right]$
(G) $\left[\frac{1}{3}, 1\right)$
(H) $\left(\frac{1}{3}, 1\right]$
(I) $\left(\frac{1}{3}, 1\right)$
(J) $(-\infty, \infty)$
18. The coefficient of $(x-3)^{5}$ in the Taylor polynomial of order 7 of

$$
x \ln (x)-3 \ln (x)
$$

centered at $a=3$ is:
(A) $\frac{1}{324}$
(B) $\frac{1}{42}$
(C) 0
(D) $-\frac{1}{42}$
(E) $-\frac{1}{324}$
19. Find the sum of the series

$$
\sum_{n=3}^{\infty} \ln \left(\frac{n}{n+1}\right)^{3}
$$

(A) 0
(B) $3 \ln (2)$
(C) $3 \ln (3)$
(D) $3 \ln (4)$
(E) The series is divergent.
20. If you use the Taylor polynomial of order 9 of $\sin \left(x^{2}\right)$ to approximate

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

you get:
(A) $\frac{1}{6}$
(B) $\frac{5}{6}$
(C) $\frac{8}{9}$
(D) $\frac{13}{42}$
(E) $\frac{951}{3080}$

