1	2	3	4	4	5	6	7	8	9	10	11	12	13	14	15	Total \|l

Donot write above this line!
NAME (print):

Math 104 / Fall 2011
$\begin{array}{llllllllll}\mathbf{F} & \mathbf{I} & \mathbf{N} & \mathbf{A} & \mathbf{L} & \mathbf{E} & \mathbf{X} & \mathbf{A} & \mathbf{M}\end{array}$

Rules:

- One sheet of paper ($8 \frac{1}{2}$ by 11 inch) both sides handwritten notes is permitted.
- No other written or printed materials are allowed.
- No electronic devices (cellular, calculator, iPad, etc.) are allowed.

Grading:

- Each problem is worth 10 points (partial credit possible).
- Do all 15 (fiveteen) problems, showing your work and circling your answers.
- No credit will be given for just guessing and not showing the work leading to the answer.

Instructions:

- Fill out the information requested below, and at the top of every page of this exam.
- Check that your exam booklet contains cover page + eight pages (15 problems).

Signature:

Class:

Recitation (\#, day \& time):

NAME:

1. The value of the integral $\int_{-1}^{1}\left(\sqrt[3]{x}+\frac{1}{1+x^{2}}+\frac{1}{2-x}\right) d x$ is:
(A) $1+\frac{\pi}{2}$
(B) $\frac{47}{10}$
(C) $\frac{\pi}{2}+\ln 3$
(D) $\ln 3+3$
(E) $1+2 \pi$ (F) 0
(G) $\frac{\pi}{2}-\ln 3$ (H) 1
2. Find the length of the arc of the curve defined by $y=\frac{2}{3} \sqrt{x^{3}}$ for $0 \leq x \leq 3$.
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) 4
(D) $5 \ln 3$
(E) $\frac{14}{3}$
(F) $\frac{1}{4}$
(G) $\frac{e}{8}$
(H) $\frac{\ln 3}{2}$

NAME:
3. Find the volume obtained by rotating the region between the graph of $y=\frac{1}{2} \sin ^{2}\left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ about the y-axis.
(A) $\frac{\pi}{2}$
(B) $\frac{\pi^{2}}{4}$
(C) $\frac{5}{4}$
(D) $\frac{3 \pi^{2}}{4}$
(E) $\frac{1}{2}$
(F) $\frac{1}{4}$
(G) $\frac{\pi}{8}$
(H) $\frac{\pi^{2}}{8}$
4. Evaluate $\int_{1}^{e^{3}} \frac{\ln x}{\sqrt[3]{x^{2}}} d x$.
(A) $3 e-9$
(B) $3 e^{2}-9$
(C) $9 e^{2}-3$
(D) $3 e^{2}$
(E) $9 e^{2}$
(F) 9
(G) $9 e-3$
(H) $3 e$

NAME:
5. Find the area bounded by the x-axis and the graph of $y=x e^{-2 x}$ for $0 \leq x<\infty$.
(A) 1
(B) 2
(C) $e-2$
(D) $\frac{1}{4}$
(E) $\frac{1}{2}$
(F) $\frac{1}{e}$
(G) $\frac{1}{2 e}$
(H) $\frac{1}{4 e}$
6. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(5 x-3)^{n}}{n^{2}}$.
(A) $(-1,1) \quad(\mathrm{B})[-1,1]$
(C) $\left[1, \frac{4}{5}\right)$
(D) $\left[-\frac{4}{5}, \frac{4}{5}\right]$
(E) $\left[-\frac{4}{5}, \frac{4}{5}\right)$
(F) $\left[\frac{2}{5}, \frac{4}{5}\right]$
(G) $[0,1]$
(H) $\{0\}$

NAME:
7. Let $f(x)=e^{-x^{2}}$. Then $f^{(10)}(0)$ is
(A) $-\frac{1}{120}$
(B) $\frac{1}{10!}$
(C) $\frac{10}{5!}$
(D) $-\frac{10!}{5!}$
(E) $\frac{3}{10}$
(F) $\frac{1}{100}$
(G) 1
(H) 0
8. The region bounded by $y=\frac{x}{\sqrt[4]{\left(x^{2}+3\right)^{5}}}$, the x-axis, and $0 \leq x \leq 1$, is rotated about the x-axis. The volume of the resulting solid is equal to:
(A) $\frac{\pi}{6}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{e}{2}$
(D) $\frac{\pi}{4}$
(E) $\frac{e}{2}$
(F) $\sec 2$
(G) $\frac{1}{2}$
(H) $\frac{\pi}{72}$

NAME:
9. Which of the following is the best approximation of $\ln \left(\frac{11}{10}\right)$?
(A) 0
(B) $\frac{1}{10}$
(C) $\frac{5}{100}$
(D) $\frac{9}{100}$
(E) $\frac{95}{1000}$
(F) $\frac{99}{1000}$
(G) $\frac{109}{1000}$
(H) $\frac{155}{1000}$
10. Consider the function $f(x)=\frac{1}{x} e^{-x^{2}} \sin 2 x$ for $x \neq 0$ and $f(0)=2$. The order three Taylor polynomial $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ of $f(x)$ about $x=0$ is:
(A) $2-\frac{10}{3} x^{2}$
(B) $2 x-\frac{4}{3} x^{3}$
(C) $2-\frac{4}{3} x^{2}$
(D) $2-x^{2}$
(E) $x-\frac{1}{3} x^{3}$
(F) $1+x-x^{3}$
(G) $-2+x+\frac{10}{3} x^{2}$
(H) $2-x+x^{2}$

NAME:
11. Let $y(x)$ be the solution to the initial-value problem $x \frac{d y}{d x}-2 y=x^{3}$ and $y(1)=0$. What is $y(3)$?
(A) 1
(B) 3
(C) 6
(D) 9
(E) 12
(F) 15
(G) 18
(H) 27
12. A random variable has as probability density function $p(x)=2(x+1)^{-3}$ for $x \geq 0$ and $p(x)=0$ else. What is the mean of the random variable?
(A) $\sqrt{2}$
(B) $\frac{3}{2}$
(C) 1
(D) $2 \sqrt{2}$
(E) 2
(F) 4
(G) 0
(H) $\frac{11}{2}$

NAME:
13 Evaluate the integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\tan t}{\ln (\cos t)} d t$.
(A) $\frac{1}{4 e}$
(B) $\frac{1}{2 e}-\frac{1}{e}$
(C) $\ln 2$
(D) $2 e+\frac{2}{e}$
(E) $\frac{2}{e} \quad(\mathrm{~F})-\ln 2$
(G) $\ln 3-1$
(H) $\frac{4}{e}$
[Hint: $\tan t=\frac{\sin t}{\cos t}$, etc.]

14 Which of the following series converge?
(I) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$
(II) $\sum_{n=2}^{\infty} \frac{n^{3}}{\ln n}$
(III) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(IV) $\sum_{n=1}^{\infty} e^{1 / n}$
(A) I \& II
(B) I \& III
(C) I \& IV
(D) II \& III
(E) II \& IV
(F) III \& IV
(G) all four of them
(H) none of them

NAME:
15. The values of $p \geq 0$ for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges are precisely:
(A) $p>1$
(B) $p>0$
(C) $p \geq 1$
(D) $p \leq 1$ (E) $p<1$ (F) $p>\frac{1}{2}$
(G) $p>2$ (H) none.

