MATH 104 FINAL EXAM

-Fall 2012 Term—

1. Compute the integral: $\int_{-1}^{0}\left(\frac{2}{x+2}+\cos (\pi x)-x^{\frac{1}{3}}\right) d x$
(a) $1+\pi$
(b) 0
(c) divergent
(d) $\pi+\frac{1}{4}$
(e) $2 \pi-\ln 3$
$(f) * \ln 4+\frac{3}{4}$
2. The area of the region bounded by $y=\sin (\pi x)$, the x-axis, and the vertical lines $x=-\frac{1}{2}$ and $x=\frac{1}{2}$ is:
a)* $\frac{2}{\pi}$
(b) 2π
(c) $\frac{3}{2}$
(d) 2
(e) $\frac{5}{3}$
(f) 4
3. The region of the $x y$-plane bounded by $y=(x-1)^{\frac{1}{4}}$ and the x-axis for $1 \leq x \leq 2$ is rotated about the x-axis. The volume of the resulting solid of revolution is:
(a)* $\frac{2}{3} \pi$
(b) $\frac{1}{2} \pi$
(c) $\frac{3}{2}$
(d) 2π
(e) $\frac{5}{3}$
(f) 4
4. The area of the surface obtained by rotating the arc of curve $y=\sqrt{x}, \frac{3}{4} \leq x \leq 2$, about the x-axis is:
(a) $\frac{1}{6} \pi\left(3-5^{\frac{3}{2}}\right)$
(b) $\frac{1}{3} \pi\left(5^{\frac{3}{2}}-1\right)$
(c) ${ }^{*} \frac{19}{6} \pi$
(d) 2π
(e) $\frac{1}{2} \ln 2$
(f) πe^{2}
5. The sequence $x_{n}=\frac{2 n \sqrt{n}}{1-3 n^{3}}$ is:
(a) divergent to ∞
(b) divergent to $-\infty$
(c) unbounded
(d)* convergent
6. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(x-7)^{n}$ is:
(a) $[6,8]$
$(\mathrm{b})^{*}(6,8]$
(c) $x=5$
(d) $(6,8)$
(e) diverges
(f) $(-1,1)$
7. Suppose $y=y(x)$ satisfies the differential equation $x y^{\prime}=\cos x-y$ and the initial condition $y\left(\frac{\pi}{2}\right)=0$. Then $y(\pi)$ is:
(a) 0
(b) π
(c) $-\pi$
$(\mathrm{d})^{*}-\frac{1}{\pi}$
(e) $\frac{1}{\pi}$
(f) 1
8. The volume of the solid of revolution obtained by rotating the region bounded by $y=x^{2} e^{-x^{2}}$ and the x-axis for $0 \leq x \leq 1$ about the y-axis is:
a) $\frac{2}{3} \pi$
(b) $\frac{1}{2} \pi$
(c) $\frac{3}{2}$
(d) $2 \pi(e-1)$
(e) $\frac{5}{3} \pi e$
$(\mathrm{f})^{*} \pi-\frac{2 \pi}{e}$
9. Which of the assertions below hold for the following series:

$$
\text { I : } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \quad \text { II : } \quad \sum_{n=1}^{\infty} \frac{n}{\sqrt{7 n^{5}-6 n}} \quad \text { III : } \quad \sum_{n=0}^{\infty} \frac{2^{n}-5^{n}}{3^{n}+4^{n}}
$$

(a) I, II, III are convergent (b) I, II, III are divergent (c) only I converges (d)* only I and II converge
(e) only I and III diverge
(f) only III converges
10. Compute the definite integral $\int_{0}^{\pi} \sin ^{3}(x) \cos ^{4}(x) d x$.
(a) 0
(b) $\frac{4}{3}$
(c) $\arccos \frac{1}{3}$
(d) $\frac{1}{\sqrt{2}}$
$(\mathrm{e})^{*} \quad \frac{4}{35}$
(f) $\frac{6}{\sqrt{6}}$
11. Suppose that the region bounded by $y=4 \tan \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \frac{\sqrt{\pi}}{2}$ is a thin homogeneous density plate of area A. Then the x-coordinate of the center of mass of the plate is:
(a) $\frac{2}{A} \pi^{2}$
(b) $\frac{2}{A} \pi$
(c) $* \frac{1}{A} \ln 2$
(d) $\frac{3}{A} \sqrt{\pi}$
(e) 0
(f) $\frac{e \pi}{2}$
12. Consider the probability density function $f(x)$ defined by $f(x)=2(x+1)^{-3}$ for $x \geq 0$ and $f(x)=0$ for $x<0$. Then the mean of the probability density function $f(x)$ is:
(a) 0
(b)* 1
(c) $\frac{3}{2}$
(d) 2
(e) $\frac{5}{3}$
(f) 4
13. Which of the following numbers is closest to $\sin \left(18^{\circ}\right)$?
(a) $\frac{316}{1000}$
(b) $\frac{313}{1000}$
(c)* $\quad \frac{31}{100}$
(d) $\frac{307}{1000}$
(e) $\frac{304}{1000}$
(f) $\frac{301}{1000}$
[Hint: 18° in radias is $\frac{\pi}{10}$, etc...]
14. What is the coefficient of x^{3} in the Maclaurin series of the function $f(x)=\frac{\sin x}{e^{x}}$?
(a) $-\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{1}{6}$
(d) $\frac{2}{3}$
$(\mathrm{e})^{*} \quad \frac{1}{3}$
(f) $\frac{5}{6}$
[Hint: $\frac{1}{e^{x}}=e^{-x}$ and so on...]
15. For which values of α is the improper integral $\int_{0}^{1} \frac{e^{x}-1}{x^{\alpha}} d x$ convergent?
(a) all α
(b) none
(c) $\alpha=\frac{5}{2}$ only
(d) $2<\alpha$
(e) $* \alpha<2$
(f) $\alpha=5$ only
[Hint: One might use power series, etc...]

