MATH 104, Fall 2009, Final Exam NAME:

Student ID number:

Lecturer:
TA:
Recitation meeting time:

Problem	Score	Out of
1		6
2		6
3		6
4		6
5		5
6		5
7		5
8		5
9		6
10		5
11		7
12		6
13		8
14		8
15		8
16		8

Multiple choice questions

The worth of each question is one less than the number of possible answers, for example, if the choices are (a), (b), (c), (d), and (e), then a correct answer is worth 4 points. You do not need to justify your answer but you must SHOW YOUR WORK so we know you actually did it. An incorrect answer is worth -1 . No calculators are allowed on this exam.

1. Find the area of the region between the curves $x=4-y^{2}$ and $x=-3 y$.
(a) $\frac{115}{6}$
(b) $\frac{1}{4}$
(c) $\frac{43}{2}$
(d) $\frac{1}{9}$
(e) $\frac{1}{12}$
(f) 20
(g) $\frac{125}{6}$
2. Compute

$$
\int_{0}^{1 / 2} \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x
$$

(a) $\frac{\pi^{2}}{36}$
(b) $\frac{\pi}{36}$
(c) $\frac{1}{36}$
(d) $\frac{\pi}{6}$
(e) $\frac{\pi^{2}}{72}$
(f) $\frac{\pi}{72}$
(g) $\frac{1}{72}$
3. Find the value of $\int_{0}^{1} \ln \left(1+x^{2}\right) d x$.
(a) $\ln 2$
(b) $\frac{\pi}{8}$
(c) $\pi-2$
(d) $\pi-\ln 2$
(e) $\frac{\pi}{2}-2+\ln 2$
(f) $2-\ln 2$
(g) $\frac{\pi}{4}+\ln 2$
4. An ant travels in the plane on a curve satisfying

$$
\frac{d y}{d x}=\sqrt{4 x^{2}+2 x-\frac{3}{4}}
$$

when measured in inches. If the ant begins at the point $(1,1)$ and stops when the x-coordinate reaches 2 , what total number of inches does the ant travel?
(a) $\frac{3}{2}$
(b) 2
(c) $\frac{9}{4}$
(d) 3
(e) $\frac{7}{2}$
(f) π
(g) $\frac{\pi^{2}}{2}$
5. Which of the following functions solves the differential equation $y^{\prime}=4 x y$?
(a) $y=e^{-4 x}$
(b) $y=4 x$
(c) $y=e^{2 x^{2}}$
(d) $y=e^{2 x}$
(e) $y=2 x^{2}$
(f) $y=x e^{4 x}$
6. Find the coefficient of x^{5} in the Maclaurin series for the integral $\int_{1}^{x} \cos \left(t^{2}\right) d t$.
(a) $-\frac{1}{5}$
(b) $-\frac{1}{10}$
(c) $-\frac{1}{15}$
(d) $\frac{1}{15}$
(e) $\frac{1}{10}$
(f) $\frac{1}{5}$
7. Suppose that $y(x)$ is the solution to the differential equation $y^{\prime \prime}=x y$ with initial conditions $y(0)=1$ and $y^{\prime}(0)=0$. Which of the following is the closest to $y(1 / 2)$? [Hint: A series solution gives the required accuracy much more easily than does an Euler-type iteration.]
(a) 0.98
(b) 1.00
(c) 1.02
(d) 1.05
(e) 1.20
(f) 2.00
8. According to Taylor's remainder estimate, the maximum possible error in the use of $\sum_{n=0}^{4} \frac{x^{n}}{n!}$ to approximate e^{x} on the interval $[-1,1]$ is which value?
(a) $\frac{e}{240}$
(b) $\frac{e}{120}$
(c) $\frac{1}{48}$
(d) $\frac{1}{24}$
(e) $\frac{1}{24 e}$
(f) $\frac{1}{12 e}$
9. Evaluate

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{3^{2 n}(2 n+1)!}
$$

(a) $\frac{3 \sqrt{3}}{2}$
(b) $\frac{\pi}{3-\pi}$
(c) $\sin (-\pi)$
(d) $\pi e^{-\pi / 3}$
(e) $\pi e^{-\pi^{2} / 9}$
(f) $\pi \sinh \left(\frac{\pi^{2}}{9}\right)$
(g) $3 \sinh \left(\frac{\pi^{2}}{9}\right)$
10. Let $f(x)=\sum_{n=0}^{\infty}(-1)^{n} n^{2} x^{n}$. What is the third derivative, $f^{(3)}(x)$, evaluated at $x=0$?
(a) -54
(b) -9
(c) $-3 / 2$
(d) $3 / 2$
(e) 9
(f) 54
11. What is the radius of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots(3 n-1)}{3 \cdot 7 \cdot 11 \cdots(4 n-1)}(x+1)^{n} ?
$$

(a) 0
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$
(e) $\frac{4}{3}$
(f) $\frac{3}{2}$
(g) 2
(h) ∞
12. Compute

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}
$$

(a) $\frac{9}{4}$
(b) $3 e^{-3}$
(c) $\frac{4}{3}$
(d) $\sqrt{\frac{3}{2}}$
(e) 2
(f) $\frac{2}{3}$
(g) $\frac{3 n}{2 / 3}$

Free answer questions

Each of these questions is worth 8 points. Please show all work that you wish to be considered for partial credit and put a box around the final answer to each (part of the) problem.
13. A standard US Mailbox has a cross-section shaped like a square of side S with a semicircle attached. Where is the center of mass of this cross-section? State your answer in coordinates with the origin at the center of the square.

14. Newton's Law of Cooling states that the rate at which a body changes temperature is proportional to the difference between its temperature and the temperature of the surrounding medium. Suppose that a body has an initial temperature of $252^{\circ} \mathrm{F}$ and that after one hour the temperature is $216^{\circ} \mathrm{F}$. Assuming that the surrounding air is kept at a constant temperature of $72^{\circ} \mathrm{F}$, determine the temperature of the body two hours after the starting time, in degrees Fahrenheit.
15. Solve

$$
y^{\prime}=\frac{\ln (x)}{x y}
$$

with initial condition $y(1)=2$.
16. Compute the first three terms of the Maclaurin series for \sqrt{f} if the Maclaurin series for f begins $1+a x+b x^{2}+\cdots$.

