MATH 104, Fall 2009, Final Exam

NAME:

Student ID number:

Lecturer:

TA:

Recitation meeting time:

Problem	Score	Out of
1		6
2		6
3		6
4		6
5		5
6		5
7		5
8		5
9		6
10		5
11		7
12		6
13		8
14		8
15		8
16		8

Multiple choice questions

The worth of each question is one less than the number of possible answers, for example, if the choices are (a), (b), (c), (d), and (e), then a correct answer is worth 4 points. You do not need to justify your answer but you must SHOW YOUR WORK so we know you actually did it. An incorrect answer is worth -1. No calculators are allowed on this exam.

- 1. Find the area of the region between the curves $x = 4 y^2$ and x = -3y.
 - (a) $\frac{115}{6}$ (b) $\frac{1}{4}$ (c) $\frac{43}{2}$ (d) $\frac{1}{9}$ (e) $\frac{1}{12}$ (f) 20 (g) $\frac{125}{6}$

2. Compute

$$\int_0^{1/2} \frac{\arcsin(x)}{\sqrt{1-x^2}} \, dx \, .$$

(a)
$$\frac{\pi^2}{36}$$

(b) $\frac{\pi}{36}$
(c) $\frac{1}{36}$
(d) $\frac{\pi}{6}$
(e) $\frac{\pi^2}{72}$
(f) $\frac{\pi}{72}$
(g) $\frac{1}{72}$

- 3. Find the value of $\int_0^1 \ln(1+x^2) dx$.
 - (a) $\ln 2$ (b) $\frac{\pi}{8}$ (c) $\pi - 2$ (d) $\pi - \ln 2$ (e) $\frac{\pi}{2} - 2 + \ln 2$ (f) $2 - \ln 2$ (g) $\frac{\pi}{4} + \ln 2$
- 4. An ant travels in the plane on a curve satisfying

$$\frac{dy}{dx} = \sqrt{4x^2 + 2x - \frac{3}{4}}$$

when measured in inches. If the ant begins at the point (1, 1) and stops when the *x*-coordinate reaches 2, what total number of inches does the ant travel?

(a) $\frac{3}{2}$ (b) 2 (c) $\frac{9}{4}$ (d) 3 (e) $\frac{7}{2}$ (f) π (g) $\frac{\pi^2}{2}$

- 5. Which of the following functions solves the differential equation y' = 4xy?
 - (a) $y = e^{-4x}$
 - (b) y = 4x
 - (c) $y = e^{2x^2}$

 - (d) $y = e^{2x}$ (e) $y = 2x^2$
 - (f) $y = xe^{4x}$

6. Find the coefficient of x^5 in the Maclaurin series for the integral $\int_1^x \cos(t^2) dt$.

(a)
$$-\frac{1}{5}$$

(b) $-\frac{1}{10}$
(c) $-\frac{1}{15}$
(d) $\frac{1}{15}$
(e) $\frac{1}{10}$
(f) $\frac{1}{5}$

- 7. Suppose that y(x) is the solution to the differential equation y'' = xy with initial conditions y(0) = 1 and y'(0) = 0. Which of the following is the closest to y(1/2)? [Hint: A series solution gives the required accuracy much more easily than does an Euler-type iteration.]
 - (a) 0.98
 - (b) 1.00
 - (c) 1.02
 - (d) 1.05
 - (e) 1.20
 - (f) 2.00

- 8. According to Taylor's remainder estimate, the maximum possible error in the use of $\sum_{n=0}^{4} \frac{x^n}{n!}$ to approximate e^x on the interval [-1, 1] is which value?
 - (a) $\frac{e}{240}$ (b) $\frac{e}{120}$ (c) $\frac{1}{48}$ (d) $\frac{1}{24}$ (e) $\frac{1}{24e}$ (f) $\frac{1}{12e}$

9. Evaluate

$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{3^{2n}(2n+1)!} \, .$$

(a)
$$\frac{3\sqrt{3}}{2}$$

(b)
$$\frac{\pi}{3-\pi}$$

(c)
$$\sin(-\pi)$$

(d)
$$\pi e^{-\pi/3}$$

(e)
$$\pi e^{-\pi^2/9}$$

(f)
$$\pi \sinh\left(\frac{\pi^2}{9}\right)$$

(g)
$$3 \sinh\left(\frac{\pi^2}{9}\right)$$

- 10. Let $f(x) = \sum_{n=0}^{\infty} (-1)^n n^2 x^n$. What is the third derivative, $f^{(3)}(x)$, evaluated at x = 0?
 - (a) -54
 - (b) -9
 - (c) -3/2
 - (d) 3/2
 - (e) 9
 - (f) 54

11. What is the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{3 \cdot 7 \cdot 11 \cdots (4n-1)} \, (x+1)^n \, ?$$

- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ (e) $\frac{4}{3}$ (f) $\frac{3}{2}$
- (g) 2
- (h) ∞

12. Compute

$$\sum_{n=1}^{\infty} \frac{n}{3^{n-1}} \, .$$

(a)
$$\frac{9}{4}$$

(b) $3e^{-3}$
(c) $\frac{4}{3}$
(d) $\sqrt{\frac{3}{2}}$
(e) 2
(f) $\frac{2}{3}$
(g) $\frac{3n}{2/3}$

Free answer questions

Each of these questions is worth 8 points. Please **show all work** that you wish to be considered for partial credit and **put a box** around the final answer to each (part of the) problem.

13. A standard US Mailbox has a cross-section shaped like a square of side S with a semicircle attached. Where is the center of mass of this cross-section? State your answer in coordinates with the origin at the center of the square.

14. Newton's Law of Cooling states that the rate at which a body changes temperature is proportional to the difference between its temperature and the temperature of the surrounding medium. Suppose that a body has an initial temperature of 252°F and that after one hour the temperature is 216°F. Assuming that the surrounding air is kept at a constant temperature of 72°F, determine the temperature of the body two hours after the starting time, in degrees Fahrenheit. 15. Solve

$$y' = \frac{\ln(x)}{x \, y}$$

with initial condition y(1) = 2.

16. Compute the first three terms of the Maclaurin series for \sqrt{f} if the Maclaurin series for f begins $1 + ax + bx^2 + \cdots$.