1. Solve the initial-value problem. $\frac{dx}{dt} + 2tx = x$, x(0) = 5. Use your solution to compute x(3).

a)
$$5e^{-6}$$
 b) $5e^{6}$ c) $6e^{5}$ d) 3 e) -10
Ans: a

2. The volume of the solid generated by revolving the region bounded by the curves $x = y^2$ and y = x - 2 about the *y*-axis

a)
$$\frac{20\pi}{3}$$
 b) $\frac{72\pi}{5}$ c) $\frac{42\pi}{5}$ d) $\frac{13\pi}{2}$ e) $\frac{32\pi}{5}$ f) $\frac{212\pi}{15}$
Ans b

- 3. Find the volume of the solid generated by rotating about the *y*-axis the region enclosed by $y = \sin x$ and the *x*-axis from x = 0 to $x = \pi$.
 - (A) $\frac{\pi^2}{2}$ (B) $\frac{\pi}{2}$ (C) 4 (D) 2 (E) $4\pi^2$ (F) $2\pi^2$

4, Which of the following statements is true about the series $\sum_{n=0}^{\infty} (-1)^n \cos\left(\frac{1}{n}\right)$? Be sure the work you show justifies your choice.

- a) the series is absolutely convergent
- b) the series is conditionally convergent
- c) the series is divergent

Ans: c

- 5. What is the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{n^3 x^{3n}}{n^4 + 1}$
 - a) the series converges only at x = 0
 - b) the series converges for all x
 - c) the series diverges for $x \neq 0$
 - d) the series converges on (-1, 1]
 - e) the series converges on [-1, 1)
 - f) the series converges on [-1, 1]

Find the Taylor series about a = 0 for $\frac{1}{1+2r^2}$. 6.

> (A) $\sum_{n=0}^{\infty} (-1)^n \cdot 2^{2n} \cdot x^{2n} = 1 - 4 \cdot x^2 + 16 \cdot x^4 - 64 \cdot x^6 + \dots$ (B) $\sum_{n=0}^{\infty} (-1)^n \cdot 2^n \cdot x^{2n} = 1 - 2 \cdot x^2 + 4 \cdot x^4 - 8 \cdot x^6 + ...$ (C) $\sum_{n=0}^{\infty} 2^{2n} \cdot x^{2n} = 1 + 4 \cdot x^2 + 16 \cdot x^4 + 64 \cdot x^6 + \dots$ (D) $\sum_{n=0}^{\infty} 2^n \cdot x^{2n} = 1 + 2 \cdot x^2 + 4 \cdot x^4 + 8 \cdot x^6 + ...$ (E) $\sum_{n=0}^{\infty} x^{2n} = 1 + x^2 + x^4 + x^6 + \dots$ (F) $\sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + ...$

Ans: b

Ans: b

- What is the length of the part of the curve $y = x^2 \frac{\ln x}{8}$ between the points (1,1) and $(e^2, e^2 \frac{1}{8})$? 7. (b) $y = \frac{1}{2}e^3 - \frac{3}{8}$ (a) $y = e^3 - \frac{1}{2}$ (c) $y = \frac{1}{3}e^2 + \frac{1}{8}e^2$ (f) $y = \frac{1}{3}e^3 - \frac{5}{8}$ (d) $y = e^2 - \frac{7}{8}$ (e) $y = \frac{1}{2}e^2 - \frac{3}{8}$ Ans d
- $\int_{0}^{1} \frac{3x+2}{x^{2}-4} dx$ Integrate: 8. (A) -2 (B) $-\ln 3$ (C) $-\ln 2$ (D) 0 (E) $\ln 2$ (F) 2 a) -2 b) $-3\ln 2 + \ln 3$ c) $\ln 2$ d) $\pi/4$ e) 0 f) $\ln(3)$

Consider the region S bounded by the curves $y = x + \frac{1}{x^2}$ and $y = x - \frac{1}{x^2}$ for $x \ge 1$.

Ans. d

Is the area *S* finite or infinite? If finite, what is the area?

- a) the integral diverges, so the area is not finite
- b) area = 0
- c) area = 1
- d) area= 2
- e) area = π
- f) area = 4

10. Evaluate the following integral: $\int_{0}^{1} \frac{3 \ln 4x}{\sqrt{x}} dx$

a) $12\ln 2 - 12$ b) 0 c) $12(1 - \ln 2)$ d) 0 e) 12 f) divergent Ans a

11. Evaluate the integral or show it is divergent:

12. The base of a solid is the region enclosed by the ellipse $4x^2 + y^2 = 1$. If all the plane crossections perpendicular to the *x* axis are semicircles, compute the volume of the solid.

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ e) $\frac{2\pi}{3}$ f) $\frac{3\pi}{4}$
Ans c
13. Which of the following statements about the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$
where $a_n = \frac{n}{1+n^2}$ is true?
a) the series is absolutely convergent
b) the series is conditionally convergent
c) the series is divergent
H4. Evaluate the integral $\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx$
a) $\pi/4$ b) $\pi/2$ c) π d) $2/3$ e) $\frac{3}{4}$ f) 1
Ans: d

15. Solve the differential equation. 7yy' = 5x

a. $7x^2 - 5y^2 = C$ b. $5x^2 + 7y^2 = C$ c. $5x^2 - 7y^2 = C$ d. $7x^2 + 5y^2 = C$ e. $5x^2 + 7y^2 = 12$ Ans: c

- 16. Find the average value of $f(x) = \sin^2 x \cos^3 x$ over the interval $[-\pi, \pi]$
 - a) π b) 0 c) $\frac{\pi}{5}$ d) $\frac{\pi}{6}$ e) $\frac{\pi}{12}$ f) $\frac{1}{2\pi}$

17. Consider the sequence defined by $a_n = \frac{(-1)^n + n}{(-1)^n - n}$. Does this sequence converge and, if it does, to what limit?

Ans: b

a) yes, to -1 b) yes, to 0 c) yes, to 1 d) yes, to 2 e) yes to π f) diverges Ans a

18. Find the area of the surface obtained by rotating the curve $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$, $1 \le x \le 2$ about the *y*-axis.

a. $\frac{101\pi}{2}$ b. $\frac{99\pi}{2}$ c. 48π d. 24π e. 12π f) none of these

Ans: f

19. Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the largest range of values of x for which the given approximation is accurate to within the stated error.

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} , |error| < 0.08$$

a) only for $x = 0$
b) $-1 \le x \le 1$
c) $-\sqrt[6]{7.2} \le x \le \sqrt[6]{7.2}$
d) $-2 \le x \le 2$
f) $-\pi \le x \le \pi$

Ans. e

20. Find a series representation for $\int \frac{e^x}{x} dx$. a) $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} + C$ b) + C c) $\ln|x| + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!} + C$ d) $\ln|x| + \sum_{n=1}^{\infty} \frac{n+1}{n!} x^n + C$ e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n + C$ f) $\ln|x| + \sum_{n=1}^{\infty} \frac{1}{(n+1)!} x^{n+1} + C$

Ans: c