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1. Consider the region in the first quadrant bounded by y = 2% and z = y3. Rotate this region about the line
y = —1. What is the volume of the resulting solid?

16 51 © 23 86 31 166
@ 35" e 35" 14" 35" 0" @ 35

2. Find the average value of the function

f(6) = sec(0) tan(h)
on the interval [0, /4].

@ 0 \/5 -1 @ % @ % @ 4\/i_ 4 @ diverges

3. The base of a solid is a circular disk of radius 3. Find the volume of the solid if parallel cross-sections perpen-
dicular to the base are isosceles right triangles with hypotenuse lying along the base. Refer to figure 1

N\

=
Figure 1: Problem 3.

()36 (B)1s (©)9 (D)1 () va ()«

d e®
4. Find — (e7).
1 dz e )
@ elnm eee @ ezeee @ ezee“r eee @ emee’f eee eee @ eez eee
5. Let Lo
1@ = oot

Find the inverse function f~!.

@ 1@ =tomo ()
)

6. Find the limit

. . 1+ 328
lim arcsin | ————— | .
T—00 1+ 223

@ ®35 ©1 ©3 ®3 ®:
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§ arctan e3* + C
@ arctan e3* + C
@arctan e*/3 4 C
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10. Find the surface area generated by revolving the curve

y=+v1-1x2, 0<z<

N~

about the z-axis. Refer to figure 2

@2 ® O3 O

]

Figure 2: Problem 10.

©
o

1)3/2 for x € [1,4].

%4 %1113 @%w (D)4

2
11. Compute the arc length of the curve y = 1 + 3 (x

®: ®

po | —

12. Let ¥ be the curve defined by:

r=t—t2, y:t2—|—4, t e R.

What is the slope of the line tangent to ¢ at (0, 5)
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13. Find the length of the curve with parametric equations
r =sint + cost y =sint — cost

for0 <t < 2.

@ﬂ 2\/5 @2\/% @?m @9 ®\/§+ln(1+\/§)

14. Four polar plots appear below.

N

Figure 3: 1 Figure 4: II Figure 5: 111 Figure 6: IV

Also, four polar equations are given below
«:r = sin36; B :r = cos30; y:r=142siné,; d:r=24+sind
Which choice gives the correct match with the polar equation?
(A) (1.5), (ITa), (111,5), (IV,~)
(1.8), (I, ), (I11,7), (IV.4)
(O (1.8), (IT.7), (111, a), (1V. 5)
(D) (1.6), (I1.~), (L1, B), (IV.a)
(®) (1.), (I1.5), (I1), (IV.5)
(B) (1.7), (I1.a), (I11,5), (1V.5)

15. Find the area of the region between the two curves with polar equations

1 T
sinf’ 4

®3 ® ©F OF OLL OLT;

16. Find the limit of the sequence

r=12 and r=

. 1
lim ntan —.
n—oo

n
2 1 -1 il 0 divergent
® © OF ® (B) diverg

17. A sequence is defined by

2, ... n—1
ar =2 ag= 21+1/2; a3 = 21+1/2+1/4; ap = ol+1/241/2% 4 +1/2" 7

Determine lim,, .o ay,.

oGY ©z  ®: ®: o
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18. Find the interval of convergence of Z L(:1c - 1™
Inn

n=2
1 1
@O<a¢<2 —2§x<2 @OSISQ @0§a¢<1 @O§z<2 @1—;§z<1+;

19. Consider the following series:

— 1
I:an)/?,;

n=1

Which of the following statements is true?
(A)1L 1, 11L 1V all converge

I and II converge, but III and IV diverge
@ I'and III converge, but Il and IV diverge
@ Iand IV converge, but I and III diverge
@ I converges, but II, III, and IV diverge

@ all diverge

H:i5n/3; III:i#; v
n=1 n=1

oo

1
Dype

n=1

20. Let Z anz™ = (1 — )2 + (1 + )2 be the Maclaurin expansion of (1 —

n=0

(ao)® + (a1)? + (a2)?.

65 63 7 9
% ®7 ©; OF

2)/% + (1 + 2)Y/2. Find

8 5
10 ®F
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1. In the first quadrant, the curves meet at (0,0), and (1, 1). See figure 7. The volume can be computed by
both shells or washers. Hence we obtain

1 1
51
7r/ ((w1/3 +1)% — (2% + 1)2) dz = 27T/ (14 )y —y®)dy = —=n.
0 0 35
Figure 7: Problem 1.
2. @ The average value sought is plainly
4 [/ 4 /44 4 1V2 -4
—/ sec tan 0df = — secl :—(secz—secO):—(\/i—l)z V2 .
T Jo 0 0 0 4 0 s
2 h2

3. @ Let A(x) be the area of a typical triangle. The area of an isosceles right triangle is % = where a is the

length of a cathetus and 4 is the length of the hypotenuse. Now, if one is at distance |x| from the centre of the
circle, h = 2/9 — 22, and so A(z) = 9 — 2. The volume sought is

3 3
/ A(zr)dz = / (9 — 2%)dx = 36
-3 -3
cubic units.

4. @ Let f(z) = e®. By the Chain Rule

(fofof)(z)=f () (f(@)f' (f(f(2)) = e"e” e

10*
5. @ Putting y = T gathers

0%y +y=10" = 10°(1—y) =y = 10I:1y = z =logy (ly ),
Yy )

whence f~1(z) = log,, ( < )

11—z
6. @As:z:—»oo,

1+v32% V3 [ 1+V323 V3 o7
—————— ~— — arcsin| —————— | — arcsin— = —.
1+ 223 2 1+ 223 3
7.®Wehave
-2 41 % — 2?2 1 22 (x—1 1 1 1
2 —x 22—z 22—z xz(x—-1) x(xz-1) x x-—1

from where it follows that

3.3 9 3 2

— 2?41 11 55
/ 172£C i d:v:/ r——+——)dax = r —In|z|+1n|z — 1 ‘ =——In3+2n2.
2 T 2 r x—1 2 2 2
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8. (B)Put u = ¢37. Then du = 3¢3*dz. Thus

s 1 d 1 1
/ﬁdx =3 / 1—|——uuQ =3 arctanu 4+ C = 3 arctan e** + C.
9. @ Diverges, by inspection.
.1 . 4m
10. The surface area sought is 1 of the surface area of a unit sphere, therefore <=

11. @One has

The surface area sought

[ varT@r = [ Ve e = [ viw=1

dy = (z — 1)Y%dz = (dy)? = (z — 1)(dz)%

!
12. (A) {t:t — 2 =0} N {t: £ + 4= 5} = {1}. The slope of the tangent is ~ L __20)

J0) 1o -
13. @One has

dz = (cost — sint)dt, dy = (cost 4 sint)dt = +/(dz)2 + (dy)2 = V2 dt,
whence the arc length sought is

2m
V2dt =2V2 7.

0

14.

15. r = /2 is a circle of radius v/2 centred at the origin and r =
of the circular segment in figure 8. This is

13/ 1 1 sr/a g
- 2 =0+ -cotg]  =T_1.
2 /,r/4 ( sin’ ) oot L T

- = y = 1. This is asking for the area
sin 6

Aliter: One can observe that the area of the circular segment is the area of a circular sector forming § of the

area of the circle minus the area of an isosceles right triangle with catheti of length v/2, hence the desired area
is

7T(\/§)2 1 (\/5)2 .z

P pp—

<
—

—2-q1 4 1

M)

—o L

Figure 8: Problem 15.

1 1
16.. fan— ~n - — — 1.
TL nn n n
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17. @an _ 21+1/2+1/22+...+1/2n—1 . 21j% 4
N -1 .
a" = Je=1] — |z — 1]. The root test gives absolute convergence for
(Inn)i/n

lt—1<1l = -l<z-1<1 = 0<z<2.

=1y
which converges conditionally by Leibniz’s test. At 2 = 2 the series

o] 1"
At x = 0 the series becomes Z )
= Inn
becomes Z o which diverges. The interval of convergence is thus 0 < = < 2.
nn
n=2
19. @ I is a p-series with p > 1 and so converges. IT is a geometric series with ratio 5'/% > 1 and so diverges
1
111 is a p-series with p < 1 and so diverges. I'V is a geometric series with ratio =i < 1 and so converges.
20. @ By the binomial series
1/2
a2 =1+ (M) (ca) +
1 2
1/2 1/2
(1+x)1/2:1+({ x+ é):ﬁ—i— ;
whence
1/2 HE -1
(1—1’)1/2+(1+$)1/2:2+2 / ZC2+:2+2 (2)(2 ) (EQZ _ (E2+" ’
2 2-1 4
giving
1 65
a0:2,a2:1 == a%+a%+a§:4+—6 =1
(Note: The function f with f(z) = (1 — 2)"/2 4+ (1 + z)'/2 is even, and so a; = 0.)
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