Math 104 Final Exam, Fall 2003

1. (free response) Set $e^{2 x}=P_{n}(x)+R_{n}(x)$, where P_{n} and R_{n} are the nth Taylor polynomial (at $a=0$) and the remainder, respectively. Use Taylor's Theorem to prove that

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

2. The coefficient of x^{3} in the Maclaurin series for $x e^{x} \cos (x / 2)$ is ANSWER: $1 / 4$
3. The interval of convergence of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n} 2^{n}}{\sqrt{n^{2}+3}}
$$

is
ANSWER: $(-1 / 2,1 / 2]$
4. Find

$$
\int_{0}^{\infty} e^{x} \sin x d x
$$

ANSWER: $1 / 2$
5. The value of

$$
\int_{0}^{1} \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}
$$

is
ANSWER:

$$
\frac{1}{4 \sqrt{3}}
$$

6. The value of

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x-x}{2 x^{3}}
$$

is
ANSWER: 1/12
7. In the partial freaction decomposition of

$$
\frac{x+4}{x^{3}+3 x^{2}-10 x}
$$

the coefficient of $\frac{1}{x-2}$ is
ANSWER: 3/7
(In the next problem you are asked to determine the convergence or divergence of three separate sums. If you get two of the three correct you will receive $1 / 2$ credit for that problem).
8. Let

$$
\begin{array}{r}
A=\sum_{n=1}^{\infty} \frac{\ln ^{8} n}{n^{2}-1}, \\
B=\sum_{n=1}^{\infty} \frac{2 n}{n^{2}+n+1}, \\
C=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} .
\end{array}
$$

Then
(a) A, B, C converge
(b) A, B converge, C diverges
(c) A, C converge, B diverges
(d) B, C converge, A diverges
(e) A converges, B, C diverge
(f) B converges, A, C diverge
(g) C converges, A, B diverge
(h) A, B, C diverge

ANSWER: (c): A, C converge and B diverges
9. The volume of the solid generated by revolving the region between
$y=0, x=0, x=2$ and $y=1+\frac{x^{2}}{4}$ about the line $x=3$ is
ANSWER: 10π

