Instructions: This quiz has 26 questions. The use of calculators is forbidden. Click on the box with the right answer. To initialise the quiz you must click on "BEGIN QUIZ." When you finish the quiz you click on "END QUIZ" in order to see your score.

Begin Quiz Answer each of the following.

1. Find $\lim_{x \to a} x^2$	-ax+b, where a, b a	are real constants.	
a	ab	b	$a^2 + b$
2. Find $\lim_{x \to a} \frac{x^2}{x}$	$\frac{-a^2}{-a}$, where <i>a</i> is a real <i>a</i>	eal constant.	
a	2a	0	a^2
3. Let $f(x) = \begin{cases} 1 \\ - \end{cases}$	-1 if $x \neq 1$. Which if $x = 1$.	of the following asser	rtions is true?
$\lim_{x \to 1} f(x)$	= 1 and f is continue	ous at 1	
$\lim_{x \to 1} f(x)$	= -1 and f is contin	uous at 1	
$\lim_{x \to 1} f(x)$	= 1 and f is disconti	nuous at 1	
$\lim_{x \to 1} f(x)$	= -1 and f is discort	tinuous at 1	
4. If $f(x) = ax^2 - ax^2 -$	a^2x , where a is a real	l constant, then $f'(a)$	e) =
0	2a	a	a^2
5. If $y = \frac{b}{x-a}$, where $\frac{b}{x-a}$	here a, b are real cons	stants, then $\frac{\mathrm{d}y}{\mathrm{d}x} =$	
<u>_</u>	<u> </u>	b	b(x-a)
$(x-a)^2$	$(x - a)^2$	x(x-a)	0 (a a)

Home Page
Title Page
Contents
Contents
Page 1 of 6
Go Back
Full Screen
Close
Quit

Figure 1: I

Figure 2: II

Figure 3: III

Figure 4: IV

Go Back Full Screen Close Quit

Figure 5: Problem 17.

$$\begin{split} & [-3;3] \\ & [-3;-2] \cup [0;2] \text{ only} \\ & [0;3] \text{ only} \\ & [-3;-2] \cup [0;3] \text{ only} \end{split}$$

18. The number of unfilled pharmacist positions in year x is approximately

$$P(x) = -583x^3 + 2068x^2 + 323x + 2670, \qquad 0 \le x \le 3.$$

If x = 0 corresponds to year 1998, in what year was the shortage of pharmacists most severe?

1998 1999 2000 2001

19. When a stone is dropped into a pool, a circular wave moves out from the point of impact at the rate of 3a inches per second (a > 0 a real constant). How fast is the area enclosed by the wave increasing when the radius of the wave is a inches?

 $2\pi a^2$ square inches per second

 $3\pi a^2$ square inches per second

 $4\pi a^2$ square inches per second

 $6\pi a^2$ square inches per second

20. $\int_{1}^{9} \frac{dx}{(2+\sqrt{x})^{2}\sqrt{x}} = \frac{196}{10125} \qquad \frac{4}{15} \qquad 2\ln\frac{5}{3} \qquad \frac{16}{225}$ **21.** If Newton's method is used to solve $x^{3} - 3x^{2} + 4x - 1 = 0$ with an initial guess of x = 0, then the second approximation is closest to 0.318 0.314 0.25 0.184

22. For which value of the real parameter *a* does the polynomial $x^3 + 2x + a$ have a root in the interval [-1; 0]?

 $a = -1 \qquad a = 0 \qquad a = 10 \qquad a = 20$ 23. If *a* is a real constant, then $\lim_{x \to 0} \frac{\sin ax - \tan a^2 x}{x} =$ $2a \qquad -a \qquad a - a^2 \qquad a$ 24. $\lim_{h \to 0} \frac{\sqrt[4]{16 + h} - 2}{h} =$ $\frac{1}{16} \qquad \frac{1}{32} \qquad \frac{1}{64} \qquad \frac{1}{4}$

Quit

25. Consider the three functions

$$a(x) = \sqrt{\frac{2-x}{x+1}};$$
 $b(x) = \sqrt{2-x} + \sqrt{x+1};$ $c(x) = \sqrt{\frac{x+1}{2-x}};$

and the three sets of real numbers

$$I: [-1;2]$$
 $II:]-1;2]$ $III: [-1;2].$

Match each function with its domain of definition.

(I, a), (II, b), (III, c)(I, b), (II, c), (III, a)(I, b), (II, a), (III, c)(I, c), (II, b), (III, a)

26. Find the volume of the solid when the region bounded by the x-axis, the y-axis, and the curve y = x(1-x) is rotated about the x-axis.

π	π	π	π
$\overline{30}$	$\overline{15}$	$\overline{6}$	$\overline{60}$

End Quiz

Author: David A. SANTOS, January 2006

