Begin Quiz Answer each of the following.

1. Find $\lim _{x \rightarrow a} x^{2}-a x+b$, where a, b are real constants.
$\square a$ $a b$ \square $\square a^{2}+b$
2. Find $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}$, where a is a real constant.
$\square a$ \square

$\square a^{2}$
3. Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \neq 1 \\ -1 & \text { if } x=1\end{array}\right.$. Which of the following assertions is true?
$\square \lim _{x \rightarrow 1} f(x)=1$ and f is continuous at 1
$\square \lim _{x \rightarrow 1} f(x)=-1$ and f is continuous at 1
$\square \lim _{x \rightarrow 1} f(x)=1$ and f is discontinuous at 1
$\square \lim _{x \rightarrow 1} f(x)=-1$ and f is discontinuous at 1
4. If $f(x)=a x^{2}-a^{2} x$, where a is a real constant, then $f^{\prime}(a)=$ $\square 0$

\square
5. If $y=\frac{b}{x-a}$, where a, b are real constants, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$\square-\frac{b}{(x-a)^{2}}$
$\square \frac{b}{(x-a)^{2}}$
$\square \frac{b}{x(x-a)}$
$\square b(x-a)$
6. f is a function such that $f(0)=0, x f^{\prime}(x)>0$ for $x \neq 0$, and $x f^{\prime \prime}(x)>0$ for $x \neq 0$. Which of the following could be the graph of f ?

Figure 1: I
Figure 2: II
Figure 3: III
Figure 4: IV

Page 2 of 6
Go Back

Full Screen

7. At $x=-2$, the tangent line to the graph of $y=x^{3}-2 x^{2}+1$ has slope
$\square-20$

8. $\int 3 x^{5} \mathrm{~d} x=$
$\square \frac{x^{6}}{2}+C$
$\square \frac{x^{6}}{3}+C$
$\square \frac{x^{5}}{2}+C$
$\square 15 x^{2}+C$
9. By the Mean Value Theorem, between $(1,0)$ and $(2,1)$, the function $f(x)=x^{3}-2 x^{2}+1$ has at least one point at which its derivative has the value
$\square-1$
$\square 0$
\square 1
$\square 2$
10. If $a \neq 0$ is a real constant, then $\int \csc ^{2} a x \mathrm{~d} x=$

$$
\square \frac{\cot a x}{a}+C \quad \square-\frac{\cot a x}{a}+C \quad \square \frac{(\csc a x)^{3}}{a}+C \quad \square \csc ^{3} a x+C
$$

11. If $a \neq 0$ is a real constant, and $f(x)=(\sin a x)(\cos a x)$, then $f^{\prime}(0)=$
$\square 0$ \square $\square a^{2}$
12. If a, b, c are non-zero real constants, then $\lim _{x \rightarrow+\infty} \frac{a x^{2}+b x+c}{a^{2} x^{2}+b^{2} x+c}=$
$\square a b$

$\square 2 a$
$\square \frac{1}{a}$
13. The slope of the line tangent to the curve $x+4 y-2 y^{3}-3=0$ at the point $(1,1)$ is
$\square-\frac{1}{3}$
$\square \frac{1}{3}$
$\square \frac{1}{2}$
$\square-\frac{1}{2}$
14. The absolute maximum value of the function $f(x)=x^{3}-2 x+4$ on the interval $[-2 ; 2]$ is
$\square 4-\frac{4}{9} \sqrt{6}$
$\square \frac{4}{9} \sqrt{6}+4$
$\square 8$
15. If $f(0)=a$ and $f(1)=b$, where a, b are real constants, then $\int_{0}^{1} f^{\prime}(x) \mathrm{d} x=$
$\square a-b$
$\square b-a$
$\square a+b$
\square impossible to determine
16. Compute the area between the curves $y=2-2 x-x^{2}$ and $y=1-2 x$.
$\square 1$
$\square \frac{2}{3}$
$\square \frac{4}{3}$
$\square \frac{1}{3}$
17. Figure 5 consists of four semicircles, two of radius 1 and two of radius $\frac{1}{2}$. If $g(x)=$ $\int_{0}^{x} f(t) \mathrm{d} t$, where is $g(x) \geq 0$?

Home Page

Title Page

Contents

Page 4 of 6

Go Back

Full Screen

Close

Quit

Figure 5: Problem 17.

$$
\begin{aligned}
& \square[-3 ; 3] \\
& \square[-3 ;-2] \cup[0 ; 2] \text { only } \\
& \square[0 ; 3] \text { only } \\
& \square[-3 ;-2] \cup[0 ; 3] \text { only }
\end{aligned}
$$

18. The number of unfilled pharmacist positions in year x is approximately

$$
P(x)=-583 x^{3}+2068 x^{2}+323 x+2670, \quad 0 \leq x \leq 3
$$

If $x=0$ corresponds to year 1998, in what year was the shortage of pharmacists most severe?
$\square 1998$
$\square 1999$
$\square 2000$
$\square 2001$

Title Page

Contents

Page 5 of 6
Go Back

Full Screen

Close

Quit
19. When a stone is dropped into a pool, a circular wave moves out from the point of impact at the rate of $3 a$ inches per second ($a>0$ a real constant). How fast is the area enclosed by the wave increasing when the radius of the wave is a inches?
$\square 2 \pi a^{2}$ square inches per second
$\square 3 \pi a^{2}$ square inches per second
$\square 4 \pi a^{2}$ square inches per second
$\square 6 \pi a^{2}$ square inches per second
20. $\int_{1}^{9} \frac{\mathrm{~d} x}{(2+\sqrt{x})^{2} \sqrt{x}}=$
$\square \frac{196}{10125} \quad \square \frac{4}{15}$
$\square 2 \ln \frac{5}{3}$
$\square \frac{16}{225}$
21. If Newton's method is used to solve $x^{3}-3 x^{2}+4 x-1=0$ with an initial guess of $x=0$, then the second approximation is closest to
$\square 0.318$ \square 0.314
$\square 0.25$
$\square 0.184$
22. For which value of the real parameter a does the polynomial $x^{3}+2 x+a$ have a root in the interval $[-1 ; 0]$?
$\square a=-1$
$\square a=0$
$\square a=10$
$\square a=20$
23. If a is a real constant, then $\lim _{x \rightarrow 0} \frac{\sin a x-\tan a^{2} x}{x}=$

24. $\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h}=$
$\square \frac{1}{16}$

$$
\square \frac{1}{32}
$$

$$
\square \frac{1}{64}
$$

$$
\square \frac{1}{4}
$$

Home Page

Title Page

Contents

Page 6 of 6
Go Back
25. Consider the three functions

$$
a(x)=\sqrt{\frac{2-x}{x+1}} ; \quad b(x)=\sqrt{2-x}+\sqrt{x+1} ; \quad c(x)=\sqrt{\frac{x+1}{2-x}}
$$

and the three sets of real numbers

$$
I:[-1 ; 2] \quad I I:]-1 ; 2] \quad I I I:[-1 ; 2[.
$$

Match each function with its domain of definition.
$\square(I, a),(I I, b),(I I I, c)$
$\square(I, b),(I I, c),(I I I, a)$
$\square(I, b),(I I, a),(I I I, c)$
$\square(I, c),(I I, b),(I I I, a)$
26. Find the volume of the solid when the region bounded by the x-axis, the y-axis, and the curve $y=x(1-x)$ is rotated about the x-axis.
$\square \frac{\pi}{30}$

$\square \frac{\pi}{6}$
$\square \frac{\pi}{60}$

End Quiz
Score:

Correct

Author: David A. SANTOS, January 2006

